Ley de seno
tankeh18 de Junio de 2013
2.985 Palabras (12 Páginas)267 Visitas
Ley de seno
La ley de los senos establece que en cualquier triángulo la relación de cualquiera de sus lados al seno del ángulo opuesto es constante.
Escrita como fórmula, la ley de los senos es la siguiente:
a / sen A = b / sen B = c / sen C
La ley de los cosenos establece que c2 = a2 + b2 - 2ab cos C.
Nos permite calcular el tercer lado desconocido cuando se conocen dos lados y el ángulo.
Igualmente,
a2 = b2 + c2 - 2bc cos A
y
b2 = c2 + a2 - 2ca cos B
El círculo trigonométrico, o goniométrico, es aquel círculo cuyo centro coincide con el origen de coordenadas del plano cartesiano y cuyo radio mide la unidad. El círculo trigonométrico tiene la ventaja de ser una herramienta práctica en el manejo de los conceptos de trigonometría, pero al mismo tiempo es un apoyo teórico, pues ayuda a fundamentar y tener una idea precisa y formal de las funciones trigonométricas. Atreves del círculo trigonométrico se puede obtener de forma manual o analítica el valor aproximado de las razones trigonométricas para un ángulo determinado si se dispone de los instrumentos geométricos necesarios.
Características
Se toma como base un círculo de radio r = 1 con centro o, en el origen en el plano cartesiano. Se considera un [ángulo] arbitrario medido a partir del eje x positivo y en sentido positivo; o sea, en sentido contrario a las manecillas del reloj; todo ángulo puede ser colocado (y de una sola manera) de forma tal que su vértice coincida con el origen de coordenada , uno de sus lados (llamado lado inicial) coincide con la semirrecta OA y el otro lado (llamado lado terminal) quede ubicado ( a partir del inicial) en la zona de barrida en sentido contrario a la manecilla del reloj.
Si la semirrecta r =1 la hacemos rotar en sentido contrario a la manecilla del reloj, describe un círculo dividido en 4 cuadrantes (Q I, Q II, QIII, QIV). Antes de que la semirrecta OP comience a rotar, coincide con el rayo OA, formando un ángulo de 0°. Cuando la semirrecta OP rota, describe un ángulo α, el cual alcanza su máximo (describiendo un círculo completo) a 360° (2π medido en radianes). De esta forma el lado terminal de cada ángulo interseca en un único punto a la [circunferencia] y podemos asociar al ángulo en ese punto de manera unívoca.
Función trigonométrica
De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
En matemáticas, las funciones trigonométricas son las funciones establecidas con el fin de extender la definición de las razones trigonométricas a todos los números reales y complejos.
Las funciones trigonométricas son de gran importancia en física, astronomía, cartografía, náutica, telecomunicaciones, la representación de fenómenos periódicos, y otras muchas aplicaciones.
Todas las funciones trigonométricas de un ángulo θ pueden ser construidas geométricamente en relación a una circunferencia de radio unidad de centro O.
•
Identidades trigonométricas fundamentales.
Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triángulo rectángulo asociado a sus ángulos. Las funciones trigonométricas son funciones cuyos valores son extensiones del concepto de razón trigonométrica en un triángulo rectángulo trazado en una circunferencia unitaria (de radio unidad). Definiciones más modernas las describen como series infinitas o como la solución de ciertas ecuaciones diferenciales, permitiendo su extensión a valores positivos y negativos, e incluso a números complejos.
Existen seis funciones trigonométricas básicas. Las últimas cuatro, se definen en relación de las dos primeras funciones, aunque se pueden definir geométricamente o por medio de sus relaciones. Algunas funciones fueron comunes antiguamente, y aparecen en las primeras tablas, pero no se utilizan actualmente ; por ejemplo el verseno (1 − cos θ) y la exsecante (sec θ − 1).
Función Abreviatura Equivalencias (en radianes)
Seno
sin (sen)
Coseno
cos
Tangente
tan
Cotangente
ctg (cot)
Secante
sec
Cosecante
csc (cosec)
Cuartiles
Los cuartiles son los tres valores de la variable que dividen a un conjunto de datos ordenados en cuatro partes iguales.
Q1, Q2 y Q3 determinan los valores correspondientes al 25%, al 50% y al 75% de los datos.
Q2 coincide con la mediana.
Cálculo de los cuartiles
1 Ordenamos los datos de menor a mayor.
2 Buscamos el lugar que ocupa cada cuartil mediante la expresión .
Número impar de datos
2, 5, 3, 6, 7, 4, 9
Número par de datos
2, 5, 3, 4, 6, 7, 1, 9
Cálculo de los cuartiles para datos agrupados
En primer lugar buscamos la clase donde se encuentra , en la tabla de las frecuencias acumuladas.
Ejercicio de cuartiles
Calcular los cuartiles de la distribución de la tabla:
fi Fi
[50, 60) 8 8
[60, 70) 10 18
[70, 80) 16 34
[80, 90) 14 48
[90, 100) 10 58
[100, 110) 5 63
[110, 120) 2 65
65
Cálculo del primer cuartil
Cálculo del segundo cuartil
Cálculo del tercer cuartil
Deciles
Los deciles son los nueve valores que dividen la serie de datos en diez partes iguales.
Los deciles dan los valores correspondientes al 10%, al 20%... y al 90% de los datos.
D5 coincide con la mediana.
Cálculo de los deciles
En primer lugar buscamos la clase donde se encuentra , en la tabla de las frecuencias acumuladas.
Ejercicio de deciles
Calcular los deciles de la distribución de la tabla:
fi Fi
[50, 60) 8 8
[60, 70) 10 18
[70, 80) 16 34
[80, 90) 14 48
[90, 100) 10 58
[100, 110) 5 63
[110, 120) 2 65
65
Cálculo del primer decil
Cálculo del segundo decil
Cálculo del tercer decil
Cálculo del cuarto decil
Cálculo del quinto decil
Cálculo del sexto decil
Cálculo del séptimo decil
Cálculo del octavo decil
Cálculo del noveno decil
Percentiles
Los percentiles son los 99 valores que dividen la serie de datos en 100 partes iguales.
Los percentiles dan los valores correspondientes al 1%, al 2%... y al 99% de los datos.
P50 coincide con la mediana.
Cálculo de los percentiles
En primer lugar buscamos la clase donde se encuentra , en la tabla de las frecuencias acumuladas.
Ejercicio de percentiles
Calcular el percentil 35 y 60 de la distribución de la tabla:
fi Fi
[50, 60) 8 8
[60, 70) 10 18
[70, 80) 16 34
[80, 90) 14 48
[90, 100) 10 58
[100, 110) 5 63
[110, 120) 2 65
65
Percentil 35
Percentil 60
Operaciones con monomios.
Suma de monomios.Para sumar dos monomios con la misma parte literal, se mantiene ésta y se suman los coeficientes.
Resta de monomios.Para restar dos monomios con identica parte literal, mantenemos la parte literal y restamos los coeficientes.
Producto de monomios.Se multiplican los coeficientes y se suman los exponentes de los elementos con la misma base.
Cociente de monomios.Se dividen los coeficientes y se restan los exponentes de los elementos de la misma base.
polinomios
P(x) = 2x3 + 5x − 3 Q(x) = 4x − 3x2 + 2x3
1Ordenamos los polinomios, si no lo están.
Q(x) = 2x3 − 3x2 + 4x
P(x) + Q(x) = (2x3 + 5x − 3) + (2x3 − 3x2 + 4x)
2Agrupamos los monomios del mismo grado.
P(x) + Q(x) = 2x3 + 2x3 − 3 x2 + 5x + 4x − 3
3Sumamos los monomios semejantes.
P(x) + Q(x) = 4x3− 3x2 + 9x − 3
Resta de polinomios
La resta de polinomios consiste en sumar al minuendo el opuesto del sustraendo.
P(x) − Q(x) = (2x3 + 5x − 3) − (2x3 − 3x2 + 4x)
P(x) − Q(x) = 2x3 + 5x − 3 − 2x3 + 3x2 − 4x
P(x) − Q(x) = 2x3 − 2x3 + 3x2 + 5x− 4x − 3
P(x) − Q(x) = 3x2 + x − 3
Multiplicación de polinomios
Multiplicación de un número por un polinomio
Es otro polinomio que tiene de grado el mismo del polinomio y como coeficientes el producto de los coeficientes del polinomio por el número.
3 • ( 2x3 − 3 x2 + 4x − 2) = 6x3 − 9x2 + 12x − 6
Multiplicación de un monomio por un polinomio
Se multiplica el monomio por todos y cada uno de los monomios que forman el polinomio.
3 x2 • (2x3 − 3x2 + 4x − 2) = 6x5 − 9x4 + 12x3 − 6x2
Multiplicación de polinomios
P(x) = 2x2 − 3 Q(x) = 2x3 − 3x2 + 4x
Se multiplica cada monomio del primer polinomio por todos los elementos segundo polinomio.
P(x) • Q(x) = (2x2 − 3) • (2x3 − 3x2 + 4x) =
= 4x5 − 6x4 + 8x3 − 6x3 + 9x2 − 12x =
Se suman los monomios del mismo grado.
= 4x5 − 6x4 + 2x3 + 9x2 − 12x
...