ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

METODO SIMPLEX


Enviado por   •  6 de Mayo de 2012  •  1.148 Palabras (5 Páginas)  •  1.189 Visitas

Página 1 de 5

El método Simplex es un procedimiento iterativo creado por Reddy Mikks. Y es utilizado en la Investigación de Operaciones que permite ir mejorando la solución a cada paso. El proceso concluye cuando no es posible seguir mejorando más dicha solución.

Partiendo del valor de la función objetivo en un vértice cualquiera, el método consiste en buscar sucesivamente otro vértice que mejore al anterior. La búsqueda se hace siempre a través de los lados del polígono (o de las aristas del poliedro, si el número de variables es mayor). Cómo el número de vértices (y de aristas) es finito, siempre se podrá encontrar la solución.

El método Simplex se basa en la siguiente propiedad: si la función objetivo, f, no toma su valor máximo en el vértice A, entonces hay una arista que parte de A, a lo largo de la cual f aumenta.

Deberá tenerse en cuenta que este método sólo trabaja para restricciones que tengan un tipo de desigualdad "≤" y coeficientes independientes mayores o iguales a 0, y habrá que estandarizar las mismas para el algoritmo. En caso de que después de éste proceso, aparezcan (o no varíen) restricciones del tipo "≥" o "=" habrá que emplear otros métodos, siendo el más común el método de las Dos Fases.

Resolver mediante el método simplex el siguiente problema:

Maximizar Z = f(x,y) = 3x + 2y

sujeto a: 2x + y ≤ 18

2x + 3y ≤ 42

3x + y ≤ 24

x ≥ 0 , y ≥ 0

Se consideran las siguientes fases:

1. Convertir las desigualdades en igualdades

Se introduce una variable de holgura por cada una de las restricciones del tipo ≤, para convertirlas en igualdades, resultando el sistema de ecuaciones lineales:

2x + y + r = 18

2x + 3y + s = 42

3x +y + t = 24

2. Igualar la función objetivo a cero

- 3x - 2y + Z = 0

3. Escribir la tabla inicial simplex

En las columnas aparecerán todas las variables básicas del problema y las variables de holgura/exceso. En las filas se observan, para cada restricción las variables de holgura con sus coeficientes de las igualdades obtenidas, y la última fila con los valores resultantes de sustituir el valor de cada variable en la función objetivo, y de operar tal como se explicó en la teoría para obtener el resto de valores de la fila:

Tabla I . Iteración nº 1

3 2 0 0 0

Base Cb P0 P1 P2 P3 P4 P5

P3 0 18 2 1 1 0 0

P4 0 42 2 3 0 1 0

P5 0 24 3 1 0 0 1

Z 0 -3 -2 0 0 0

4. Condición de parada

Cuando en la fila Z no existe ningún valor negativo, se ha alcanzado la solución óptima del problema. En tal caso, se ha llegado al final del algoritmo. De no ser así, se ejecutan los siguientes pasos.

5. Condición de entrada y salida de la base

A. Primero debemos saber la variable que entra en la base. Para ello escogemos la columna de aquel valor que en la fila Z sea el menor de los negativos. En este caso sería la variable x (P1) de coeficiente - 3.

Si existiesen dos o más coeficientes iguales que cumplan la condición anterior (caso de empate), entonces se optará por aquella variable que sea básica.

La columna de la variable que entra en la base se llama columna pivote (En color verde).

B. Una vez obtenida la variable que entra en la base, estamos en condiciones de deducir cual será la variable que sale. Para ello se divide cada término independiente (P0) entre el elemento correspondiente de la columna pivote, siempre que el resultado sea mayor que cero, y se escoge el mínimo de ellos.

En nuestro caso: 18/2 [=9] , 42/2 [=21] y 24/3 [=8]

Si hubiera algún elemento menor o igual a cero no se realiza dicho cociente, y caso de que todos los elementos de la columna pivote fueran de ésta condición tendríamos una solución no acotada y terminaríamos el problema

El

...

Descargar como (para miembros actualizados) txt (7 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com