Matematicas Ley De Tricotomía
emecedcl11 de Febrero de 2012
961 Palabras (4 Páginas)10.689 Visitas
Ley de tricotomía
En matemáticas, la ley de tricotomía es una propiedad de algunos conjuntos ordenados, por la cual todos sus elementos son comparables entre sí.
[editar]Enunciado
Sea un conjunto X parcialmente ordenado por la relación ≤, y sea < la relación de orden estricta asociada.
En X se cumple la ley de tricotomía si para cada par de elementos x e y, se tiene una sola de las siguientes relaciones:
x < y
y < x
x = y
La ley de tricotomía es equivalente a que la relación de orden ≤ sea total, esto es, que dados dos elementos x e y se tenga x ≤ y o y ≤ x (o ambos). Las relaciones de orden de losnúmeros naturales, enteros, racionales y reales cumplen la ley de tricotomía (son órdenes totales). Sin embargo, la relación de inclusión ⊆ en los subconjuntos de un conjunto dado no la cumple: puede haber dos conjuntos incomparables tales que ninguno es subconjunto del otro.
La ley de trocotomía y surge cuando se induce un orden en un conjunto como los Enteros (Z), o los números reales (R). Estas leyes dicen que.
Sin perdida de generalidad, puedes suponer que a,b son numeros reales.
Si a != b (a es distinto de b) entonces solo puede ocurrir una de estas 3 afirmaciones:
a < b (a es menor que b)
ó
a = b (a es igual con b)
ó
a > b (Relación transitiva
Ejemplo: Si a es mayor que b, y b es mayor que c, entonces, a es mayor que c.
Una relación binaria R sobre un conjunto A es transitiva cuando se cumple: siempre que un elemento se relaciona con otro y éste último con un tercero, entonces el primero se relaciona con el tercero.
Esto es:
Dado el conjunto A y una relación R, esta relación es transitiva si: a R b y b R c se cumple a R c.
La propiedad anterior se conoce como transitividad.
[editar]Ejemplos
Así por ejemplo dado el conjunto N de los números naturales y la relación binaria "menor o igual que" vemos que es transitiva:
Así, puesto que:
En general las relaciones de orden (ser menor, mayor, igual, menor o igual, mayor o igual) son transitivas.
Tomando de nuevo el conjunto de los números naturales, y la relación divide a:
Para todo valor a, b, c numero natural: si a divide a b y b divide a c entonces a divide a c
Dado que 3|12 (3 divide a 12) y 12|48 (12 divide a 48), la transitividad establece que 3|48 (3 divide a 48).
Sin embargo, no todas las relaciones binarias son transitivas. La relación "no es subconjunto" no es transitiva. Por ejemplo, si X = {1,2,3}, Y={2,3,4,5}, Z={1,2,3,4}. Entonces
Se cumple y pero no se cumple puesto que X es subconjunto de Z.
Otro ejemplo de relación binaria que no es transitiva es "ser la mitad de": 5 es la mitad de 10 y 10 es la mitad de 20, pero 5 no es la mitad de 20.
[editar]Representación
Una relación binaria se puede representar como pares ordenados, mediante una matriz de adyacencia o mediante un grafo. Para el caso de una relación transitiva, cada una de estas representaciones tiene características especiales:
Como pares ordenados,
Como matriz de adyacencia M, la matriz es tal que
Como grafo, cada vez que desde un nodo v1 se pueda llegar a otro v3, pasando primero por un nodo intermedio v2, entonces también existirá la arista (v1,v3).
a es mayor que b)
3. DENSIDAD
Para entender el concepto de densidad es necesario recordar los conceptos de volumen y masa.
• Una característica de todos los objetos en cualquiera de las tres fases de la materia es que ocupan un volumen determinado. El volumen de los objetos se mide en
...