Pendiente De Una Recta
kimkiko28 de Mayo de 2014
457 Palabras (2 Páginas)462 Visitas
Pendiente de una recta
Es el grado (medida) de inclinación de una recta, la razón de cambio en y con respecto al cambio en x.
Si una recta pasa por dos puntos dintintos (x1, y1) y (x2, y2), entonces su pendiente (m) está dada por:
Esto es,
Ejemplo para discusión: Dibuja la recta que pasa por los puntos dados y halla la pendiente para cada caso.
1) (-3,4) y (6, -2)
2) (-3, -4) y (3, 2)
3) (-4, 2) y ( 3, 2)
4) (2, 4) y (2, -3)
Con los ejemplos discutidos podemos observar la interpretación geométrica de la pendiente de una recta:
Pendiente Tipo de recta
positiva recta ascendente
negativa recta descendente
cero recta horizontal
no definida recta vertical
Pendiente positiva
Cuando la recta es creciente (al aumentar los valores de x aumentan los de y), su pendiente es positiva, en la expresión analítica m > 0
Pendiente negativa
Cuando la recta es decreciente (al aumentar los valores de x disminuyen los de y), su pendiente es negativa, en la expresión analítica m < 0
Pendiente nula o cero
Cuando la recta es constante se dice que tiene pendiente nula, en la expresión analítica m = 0
Visualmente, también podemos definir si la pendiente es positiva o negativa:
Si el ángulo que forma la recta con la parte positiva del eje OX es agudo, la pendiente es positiva y crece al crecer el ángulo.
Si el ángulo que forma la recta con la parte positiva del eje OX es obtuso, la pendiente es negativa y decrece al crecer el ángulo.
Con los ejemplos discutidos podemos observar la interpretación geométrica de la pendiente de una recta:
Pendiente Tipo de recta
positiva recta ascendente
negativa recta descendente
cero recta horizontal
no definida recta vertical
Ecuación
Tomados dos puntos de una recta, la pendiente ´´m ´´, es siempre constante. Se calcula mediante la ecuación:
m = ysubindice2 - ysubindice1 / Xsubindice2 - Xsubindice1
Se puede obtener la ecuación de la recta a partir de la fórmula de la pendiente:
Y - ysubindice1 = m(X - Xsunindice1)
Esta forma de obtener la ecuación de una recta se suele utilizar cuando se conocen su pendiente y las coordenadas de uno de sus puntos, o cuando se conocen sólo los dos puntos, por lo que también se le llama ecuación de la recta conocidos dos puntos, y se le debe a Jean Baptiste Biot. La pendiente m es la tangente de la recta con el eje de abscisas X.
Forma simplificada de la ecuación de la recta:
Si se conoce la pendiente m, y el punto donde la recta corta al eje de ordenadas es (0, b), podemos deducir, partiendo de la ecuación general de la recta,
y2 − y1 = m(x2 − x1):
y - b = m(X - 0)
y - b = mX
y = mX + b
...