ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Aldehidos


Enviado por   •  22 de Julio de 2013  •  3.781 Palabras (16 Páginas)  •  548 Visitas

Página 1 de 16

INTRODUCCION

Los aldehídos y cetonas son compuestos caracterizados por la presencia del grupo carbonilo (C=O). Los aldehídos presentan el grupo carbonilo en posición terminal mientras que las cetonas lo presentan en posición intermedia. El primer miembro de la familia química de los aldehídos es el metanal o formaldehído (aldehído fórmico), mientras que el primer miembro de la familia de las cetonas es la propanona o acetona (dimetil acetona).

Los alcoholes son una serie de compuestos que poseen un grupo hidroxilo, -OH, unido a una cadena carbonada; este grupo OH está unido en forma covalente a un carbono con hibridación sp3. Cuando un grupo se encuentra unido directamente a un anillo aromático, los compuestos formados se llaman fenoles y sus propiedades químicas son muy diferentes.

En el presente trabajo se realizara un estudio de todo lo relacionado a los aldehídos, alcoholes y cetonas, con el fin de obtener los conocimientos necesarios sobre estos tres compuestos.

Aldehído

Según el Diccionario de la lengua española Los aldehídos son compuestos orgánicos caracterizados por poseer el grupo funcional -CHO. Se denominan como los alcoholes correspondientes, cambiando la terminación -ol por -al :

Es decir, el grupo carbonilo C=O está unido a un solo radical orgánico.

Se pueden obtener a partir de la oxidación suave de los alcoholes primarios. Esto se puede llevar a cabo calentando el alcohol en una disolución ácida de dicromato de potasio (también hay otros métodos en los que se emplea Cr en el estado de oxidación +6). El dicromato se reduce a Cr3+ (de color verde). También mediante la oxidación de Swern, en la que se emplea dimetilsulfóxido, (DMSO), dicloruro de oxalilo, (CO)2Cl2, y una base. Esquemáticamente el proceso de oxidación es el siguiente

Etimológicamente, la palabra aldehído proviene del latín científico alcohol dehydrogenatum (alcohol deshidrogenado).

Propiedades

Propiedades físicas

La doble unión del grupo carbonilo son en parte covalentes y en parte iónicas dado que el grupo carbonilo está polarizado debido al fenómeno de resonancia.

Los aldehídos con hidrógeno sobre un carbono sp³ en posición alfa al grupo carbonilo presentan isomería tautomérica.Los aldehídos se obtienen de la deshidratación de un alcohol primario, se deshidratan con permanganato de potasio, la reacción tiene que ser débil , las cetonas también se obtienen de la deshidratación de un alcohol , pero estas se obtienen de un alcohol secundario e igualmente son deshidratados con permanganato de potasio y se obtienen con una reacción débil , si la reacción del alcohol es fuerte el resultado será un ácido carboxílico.

Propiedades químicas

Se comportan como reductor, por oxidación el aldehído de ácidos con igual número de átomos de carbono.

La reacción típica de los aldehídos y las cetonas es la adición nucleofílica.

Nomenclatura

Se nombran sustituyendo la terminación -ol del nombre del hidrocarburo por -al. Los aldehídos más simples (metanal y etanal) tienen otros nombres que no siguen el estándar de la Unión Internacional de Química Pura y Aplicada (IUPAC) pero son más utilizados (formaldehído y acetaldehído, respectivamente) estos últimos dos son nombrados en nomenclatura trivial.

Número de carbonos

1

2

3

4

5

6

7

8

9

10

Nomenclatura IUPAC

Metanal

Etanal

Propanal

Butanal

Pentanal

Hexanal

Heptanal

Octanal

Nonanal

Decanal

Nomenclatura trivial

Formaldehído

Acetaldehído

Propionaldehído

Propilaldehído

n-Butiraldehído

n-Valeraldehído

Amilaldehído

n-Pentaldehído

Capronaldehído

n-Hexaldehído

Enantaldehído

Heptilaldehído

n-Heptaldehído

Caprilaldehído

n-Octilaldehído

Pelargonaldehído

n-Nonilaldehído

Caprinaldehído

n-Decilaldehído

Fórmula

HCHO

CH3CHO

C2H5CHO

C3H7CHO

C4H9CHO

C5H11CHO

C6H13CHO

C7H15CHO

C8H17CHO

C9H19CHO

P.E.°C

-21

20,2

48,8

75,7

103

Fórmula general: CnH2n+1CHO (n = 0, 1, 2, 3, 4, ...)

Los aldehídos son funciones terminales, es decir que van al final de las cadenas Nomenclatura de ciclos

Localizador Cadena Carbonada Principal Carbaldehido Ejemplo

1) Benceno Carbaldehido

2,3 Naftaleno DiCarbaldehido

Si el ciclo presenta otros sustituyentes menos importantes se los nombre primeros, así:

Reacciones

Los aldehídos aromáticos como el benzaldehído se dismutan en presencia de una base dando el alcohol y el ácido carboxílico correspondiente:

2 C6H5C(=O)H → C6H5C(=O)OH + C6H5CH2OH

Con aminas primarias dan las iminas correspondiente en una reacción exotérmica que a menudo es espontánea:

R-CH=O + H2N-R' → R-CH=N-R'

En presencia de sustancias reductoras como algunos hidruros o incluso otros aldehídos pueden ser reducidos al alcohol correspondiente mientras que oxidantes fuertes los transforman en el correspondiente ácido carboxílico.

Con cetonas que portan un hidrógeno sobre un carbono sp³ en presencia de catalizadores ácidos o básicos se producen condensaciones tipo aldol.

Con alcoholes o tioles en presencia de sustancias higroscópicas se pueden obtener acetales por condensación. Como la reacción es reversible y los aldehídos se recuperan en medio ácido y presencia de agua esta reacción se utiliza para la protección del grupo funcional.

Síntesis

• Por oxidación de alcoholes primarios

• Por carbonilación.

• Por oxidación de halogenuros de alquilo (Oxidación de Kornblum)

• Por reducción de ácidos carboxílicos o sus derivados (ésteres, halogenuros de alquilo).

Usos

Los aldehidos se utilizan principalmente para la fabricación de resinas, Plásticos, Solventes, Pinturas, Perfumes, Esencias.

Los aldehídos están presentes en numerosos productos naturales y grandes variedades de ellos son de la propia vida cotidiana. La glucosa por ejemplo existe en una forma abierta que presenta un grupo aldehído. El acetaldehído formado como intermedio en la metabolización se cree responsable en gran medida de los síntomas de la resaca tras la ingesta de bebidas alcohólicas.

El formaldehído es un conservante que se encuentra en algunas composiciones de productos cosméticos. Sin embargo esta aplicación debe ser vista con cautela ya que en experimentos con animales el compuesto ha demostrado un poder cancerígeno. También se utiliza en la fabricación de numerosos compuestos químicos como la baquelita, la melanina, entre otros.

CH2O

CH3-CHO

CH3-CH2-CHO

CH3-CH2-CH2-CHO

CH3-CH2-CH2-CH2-CHO

Se nombran con el nombre de la cadena de carbonos a la que se añade el sufijo -al, el carbono que tiene el doble enlace con el oxígeno es siempre el carbono 1.

El metanal recibe el nombre comercial de formaldehído, formalina o formol. Muy usado en la industria como desinfectante.

El etanal también es conocido comercialmente como acetaldehído es un producto intermedio importante en la fabricación de plásticos, disolventes y colorantes.

Alcohol

Según Diccionario enciclopédico popular ilustrado Salvat (1914), en química se denomina alcohol, a aquellos compuestos químicos orgánicos que contienen un grupo hidroxilo (-OH) en sustitución de un átomo de hidrógeno enlazado de forma covalente a un átomo de carbono. Si contienen varios grupos hidroxilos se denominan polialcoholes.

Los alcoholes pueden ser primarios, secundarios o terciarios, en función del número de átomos de hidrógeno sustituidos en el átomo de carbono al que se encuentran enlazado el grupo hidroxilo.

A nivel del lenguaje popular se utiliza para indicar comúnmente una bebida alcohólica, que presenta etanol, con fórmula química CH3CH2OH.

Historia

La palabra alcohol proviene del árabe الكحول al-kukhūl 'el espíritu', de al- (determinante) y kuḥūl que significa 'sutil'. Esto se debe a que antiguamente se llamaba "espíritu" a los alcoholes. Por ejemplo "espíritu de vino" al etanol, y "espíritu de madera" al metanol.

Los árabes conocieron el alcohol extraído del vino por destilación. Sin embargo, su descubrimiento se remonta a principios del siglo XIV, atribuyéndose al médico Arnau de Villanova, sabio alquimista y profesor de medicina en Montpellier. La quinta esencia de Ramon Llull no era otra cosa que el alcohol rectificado a una más suave temperatura. Lavoisier fue quien dio a conocer el origen y la manera de producir el alcohol por medio de la fermentación vínica, demostrando que bajo la influencia de la levadura de cerveza el azúcar de uva se transforma en ácido carbónico y alcohol. Fue además estudiado por Scheele, Gehle, Thénard, Duma y Boullay y en 1854 Berthelot lo obtuvo por síntesis.1

Química Orgánica

Nomenclatura

Común (no sistemática): anteponiendo la palabra alcohol y sustituyendo el sufijo -ano del correspondiente alcano por -ílico. Así por ejemplo tendríamos alcohol metílico, alcohol etílico, alcohol propílico, entre otros.

IUPAC: añadiendo una l (ele) al sufijo -ano en el nombre del hidrocarburo precursor (met-ano-l, de donde met- indica un átomo de carbono, -ano- indica que es un hidrocarburo alcano y -l que se trata de un alcohol), e identificando la posición del átomo del carbono al que se encuentra enlazado el grupo hidroxilo (3-butanol, por ejemplo).

Cuando el grupo alcohol es sustituyente, se emplea el prefijo hidroxi-

Se utilizan los sufijos -diol, -triol, etc., según la cantidad de grupos OH que se encuentre.

Formulación

Los monoalcoholes derivados de los alcanos responden a la fórmula general CnH2n+1OH .

Propiedades generales

Los alcoholes suelen ser líquidos incoloros de olor característico, solubles en el agua en proporción variable y menos densos que ella. Al aumentar la masa molecular, aumentan sus puntos de fusión y ebullición, pudiendo ser sólidos a temperatura ambiente (p.e. el pentaerititrol funde a 260 °C). A diferencia de los alcanos de los que derivan, el grupo funcional hidroxilo permite que la molécula sea soluble en agua debido a la similitud del grupo hidroxilo con la molécula de agua y le permite formar enlaces de hidrógeno. La solubilidad de la molécula depende del tamaño y forma de la cadena alquílica, ya que a medida que la cadena alquílica sea más larga y más voluminosa, la molécula tenderá a parecerse más a un hidrocarburo y menos a la molécula de agua, por lo que su solubilidad será mayor en disolventes apolares, y menor en disolventes polares. Algunos alcoholes (principalmente polihidroxílicos y con anillos aromáticos) tienen una densidad mayor que la del agua.

El hecho de que el grupo hidroxilo pueda formar enlaces de hidrógeno también afecta a los puntos de fusión y ebullición de los alcoholes. A pesar de que el enlace de hidrógeno que se forma sea muy débil en comparación con otros tipos de enlaces, se forman en gran número entre las moléculas, configurando una red colectiva que dificulta que las moléculas puedan escapar del estado en el que se encuentren (sólido o líquido), aumentando así sus puntos de fusión y ebullición en comparación con sus alcanos correspondientes. Además, ambos puntos suelen estar muy separados, por lo que se emplean frecuentemente como componentes de mezclas anticongelantes. Por ejemplo, el 1,2-etanodiol tiene un punto de fusión de -16 °C y un punto de ebullición de 197 °C.

Propiedades químicas de los alcoholes

Reacciones de alcoholes.

Los alcoholes pueden comportarse como ácidos o bases gracias a que el grupo funcional es similar al agua, por lo que se establece un dipolo muy parecido al que presenta la molécula de agua.

Por un lado, si se enfrenta un alcohol con una base fuerte o con un hidruro de metal alcalino se forma el grupo alcoxi, en donde el grupo hidroxilo se desprotona dejando al oxígeno con carga negativa. La acidez del grupo hidroxilo es similar a la del agua, aunque depende fundamentalmente del impedimento estérico y del efecto inductivo. Si un hidroxilo se encuentra enlazado a un carbono terciario, éste será menos ácido que si se encontrase enlazado a un carbono secundario, y a su vez éste sería menos ácido que si estuviese enlazado a un carbono primario, ya que el impedimento estérico impide que la molécula se solvate de manera efectiva. El efecto inductivo aumenta la acidez del alcohol si la molécula posee un gran número de átomos electronegativos unidos a carbonos adyacentes (los átomos electronegativos ayudan a estabilizar la carga negativa del oxígeno por atracción electrostática).

Por otro lado, el oxígeno posee 2 pares electrónicos no compartidos por lo que el hidroxilo podría protonarse, aunque en la práctica esto conduce a una base muy débil, por lo que para que este proceso ocurra, es necesario enfrentar al alcohol con un ácido muy fuerte.

Halogenación de alcoholes

Para fluorar cualquier alcohol se requiere del 'reactivo de Olah.

Para clorar o bromar alcoholes, se deben tomar en cuenta las siguientes consideraciones:

1. Alcohol primario: los alcoholes primarios reaccionan muy lentamente. Como no pueden formar carbocationes, el alcohol primario activado permanece en solución hasta que es atacado por el ion cloruro. Con un alcohol primario, la reacción puede tomar desde treinta minutos hasta varios días.

2. Alcohol secundario: los alcoholes secundarios tardan menos tiempo, entre 5 y 20 minutos, porque los carbocationes secundarios son menos estables que los terciarios.

3. Alcohol terciario: los alcoholes terciarios reaccionan casi instantáneamente, porque forman carbocationes terciarios relativamente estables.

Los alcoholes terciarios reaccionan con ácido clorhídrico directamente para producir el cloroalcano terciario, pero si se usa un alcohol primario o secundario es necesaria la presencia de un ácido de Lewis, un "activador", como el cloruro de zinc. Como alternativa la conversión puede ser llevada a cabo directamente usando cloruro de tionilo (SOCl2). Un alcohol puede también ser convertido a bromoalcano usando ácido bromhídrico o tribromuro de fósforo (PBr3), o a yodoalcano usando fósforo rojo y yodo para generar "in situ" el triyoduro de fósforo.

Dos ejemplos:

(H3C)3C-OH + HCl → (H3C)3C-Cl + H2O

CH3-(CH2)6-OH + SOCl2 → CH3-(CH2)6-Cl + SO2 + HCl

Oxidación de alcoholes

Metanol: Existen diversos métodos para oxidar metanol a formaldehído y/o ácido fórmico, como la reacción de Adkins-Peterson.

Alcohol primario: se utiliza la piridina (Py) para detener la reacción en el aldehído Cr03/H+ se denomina reactivo de Jones, y se obtiene un ácido carboxílico.

Alcohol secundario: los alcoholes secundarios tardan menos tiempo, entre 5 y 10 minutos, porque los carbocationes secundarios son menos estables que los terciarios.

Alcohol terciario: si bien se resisten a ser oxidados con oxidantes suaves, si se utiliza un enérgico como lo es el permanganato de potasio, los alcoholes terciarios se oxidan dando como productos una cetona con un número menos de átomos de carbono, y se libera metano.

Deshidratación de alcoholes

La deshidratación de alcoholes es el proceso químico que consiste en la transformación de un alcohol para poder ser un alqueno por procesos de eliminación. Para realizar este procedimiento se utiliza un ácido mineral para extraer el grupo hidroxilo (OH) desde el alcohol, generando una carga positiva en el carbono del cual fue extraído el Hidroxilo el cual tiene una interacción eléctrica con los electrones más cercanos (por defecto, electrones de un hidrógeno en el caso de no tener otro sustituyente) que forman un doble enlace en su lugar.

Por esto, la deshidratación de alcoholes es útil, puesto que fácilmente convierte a un alcohol en un alqueno.

Un ejemplo simple es la síntesis del ciclohexeno por deshidratación del ciclohexanol. Se puede ver la acción del ácido (H2SO4) ácido sulfúrico el cual quita el grupo hidroxilo del alcohol, generando el doble enlace y agua.

Se reemplaza el grupo hidroxilo por una halógeno en la Reacción de Appel.

Fuentes

Muchos alcoholes pueden ser creados por fermentación de frutas o granos con levadura, pero solamente el etanol es producido comercialmente de esta manera, principalmente como combustible y como bebida. Otros alcoholes son generalmente producidos como derivados sintéticos del gas natural o del petróleo.

Usos

Los alcoholes tienen una gran gama de usos en la industria y en la ciencia como disolventes y combustibles. El etanol y el metanol pueden hacerse combustionar de una manera más limpia que la gasolina o el gasoil. Por su baja toxicidad y disponibilidad para disolver sustancias no polares, el etanol es utilizado frecuentemente como disolvente en fármacos, perfumes y en esencias vitales como la vainilla. Los alcoholes sirven frecuentemente como versátiles intermediarios en la síntesis orgánica.

Alcohol de botiquín

El alcohol de botiquín puede tener varias composiciones. Puede ser totalmente alcohol etílico al 96º, con algún aditivo como el cloruro de benzalconio o alguna sustancia para darle un sabor desagradable. Es lo que se conoce como alcohol etílico desnaturalizado. También se utilizan como desnaturalizantes el ftalato de dietilo y el metanol, lo cual hace tóxicos a algunos alcoholes desnaturalizados.

Otras composiciones: podría contener alcohol isopropílico, no es apto para beber, pero puede ser más efectivo para el uso como secante.

Cetona (química)

Una cetona es un compuesto orgánico caracterizado por poseer un grupo funcional carbonilo unido a dos átomos de carbono, a diferencia de un aldehído, en donde el grupo carbonilo se encuentra unido al menos a un átomo de hidrógeno. Cuando el grupo funcional carbonilo es el de mayor relevancia en dicho compuesto orgánico, las cetonas se nombran agregando el sufijo -ona al hidrocarburo del cual provienen (hexano, hexanona; heptano, heptanona; etc). También se puede nombrar posponiendo cetona a los radicales a los cuales está unido (por ejemplo: metilfenil cetona). Cuando el grupo carbonilo no es el grupo prioritario, se utiliza el prefijo oxo- (ejemplo: 2-oxopropanal).

El grupo funcional carbonilo consiste en un átomo de carbono unido con un doble enlace covalente a un átomo de oxígeno.

El tener dos radicales orgánicos unidos al grupo carbonilo, es lo que lo diferencia de los ácidos carboxílicos, aldehídos, ésteres. El doble enlace con el oxígeno, es lo que lo diferencia de los alcoholes y éteres. Las cetonas suelen ser menos reactivas que los aldehídos dado que los grupos alquílicos actúan como dadores de electrones por efecto inductivo.

La propanona (comúnmente llamada acetona) es la cetona más simple.

Clasificación

Cetonas alifáticas

Resultan de la oxidación moderada de los alcoholes secundarios. Si los radicales alquilo R son iguales la cetona se denomina simétrica, de lo contrario será asimétrica, siempre y cuando exista un átomo covalente con otro.

Isomería

Las cetonas son isómeros de los aldehídos de igual número de carbono.

Las cetonas de más de cuatro carbonos presentan isomería de posición. (En casos específicos)

Las cetonas presentan tautomería ceto-enólica.

Cetonas aromáticas

Se destacan las quinonas, derivadas del benceno y tolueno.

Cetonas mixtas

Cuando el grupo carbonil se acopla a un radical arilico y un alquilico, como el fenilmetilbutanona.

Para nombrar los cetonas tenemos dos alternativas:

El nombre del hidrocarburo del que procede terminado en -ona. Como sustituyente debe emplearse el prefijo oxo-.

Citar los dos radicales que están unidos al grupo Carbonilo por orden alfabético y a continuación la palabra cetona.

Propiedades físicas

Los compuestos carbonílicos presentan puntos de ebullición más bajos que los alcoholes de su mismo peso molecular. No hay grandes diferencias entre los puntos de ebullición de aldehídos y cetonas de igual peso molecular. Los compuestos carbonílicos de cadena corta son solubles en agua y a medida que aumenta la longitud de la cadena disminuye la solubilidad.

Propiedades químicas

Al hallarse el grupo carbonilo en un carbono secundario son menos reactivas que los aldehídos. Sólo pueden ser oxidadas por oxidantes fuertes como el permanganato de potasio, dando como productos dos ácidos con menor número de átomos de carbono. Por reducción dan alcoholes secundarios. No reaccionan con el reactivo de Tollens para dar el espejo de plata como los aldehídos, lo que se utiliza para diferenciarlos. Tampoco reaccionan con los reactivos de Fehling y Schiff.

Síntesis

Por cambio de grupo funcional

• Oxidación de alcoholes secundarios

• Hidratación de alquinos

• Hidrólisis de dihalogenuros geminales

• Reacción de Nef

Por unión de esqueletos de carbono

• Síntesis de Gilman

• Síntesis de Weinreb

• Síntesis de Fukuyama

• Acilaciones de Friedel-Crafts y de Houben-Hoesch

• Reacción de Haworth

• Condensación aciloínica

• Síntesis de Bally-Scholl

• Transposición benzoínica

• Síntesis de Blaise

• Condensación de Claisen y Condensación de Dieckmann

• Reacción quelotrópica de una cetena con diazometano

• Cicloadición de una cetena con olefinas

• Reacción de Diels Alder con cetenas

• Ciclización de Ruzicka

• Reacción de Dakin–West

• Reactivos de Grignard con nitrilos

• Reacción de Darzens

• Reacción de Darzens-Nenitzescu

• Reacción de Pauson-Khand para obtener 2-ciclopentenonas

Por transposición

• Transposición de Claisen

• Transposición de Carroll

• Transposición de Fries

• Transposición de Kornblum–DeLaMare

• Transposición de Baker–Venkataraman

• Transposición de Criegee

• Transposición de Meyer–Schuster y reacción de Favorskii

Por ruptura de esqueletos de carbono

• Ozonólisis de Harris

• Reacción de Malaprade

Reacciones de cetonas

Las reacciones de los aldehídos y cetonas son esencialmente de tres tipos; adición nucleofílica, oxidación y reducción.

Adición nucleofílica: Debido a la resonancia del grupo carbonilo la reacción más importante de aldehídos y cetonas es la reacción de adición nucleofílica cuyo mecanismo es el siguiente:

Siguen este esquema la reacción con hidruros ( NaBH4, LiAlH4 ) donde Nu- = H- y la reacción con organometálicos (RMgLi, RLi) donde Nu- = R-.

• Adición nucleofílica de alcoholes.

• Adición de amina primaria.

• Adición de Hidroxilamina.

• Adición de hidracinas.

• Adición de Ácido Cianhídrico.

Ejemplos de reacciones de cetonas son la reacción de Grignard, la reacción de Reformatski, Transposición de Baker-Venkataraman.

Las cetonas se pueden oxidar para formar ésteres en la Oxidación de Baeyer-Villiger.

Las cetonas que poseen hidrógenos en posición α al grupo carbonilo dan también reacciones de condensación mediante un mecanismo en el que una base fuerte sustrae un hidrógeno α de la cetona generando un enolato, el cual (en su forma carbaniónica) actúa como nucleófilo sobre el grupo carbonilo de otra molécula de la misma cetona o de otro compuesto carbonílico (otra cetona, aldehído, éster, etcétera). Luego de la adición nucleofílica del carbanión al grupo carbonilo se genera un aldol mediante la acidificación del medio, el cual puede deshidratarse por calentamiento de la mezcla de reacción, obteniéndose un compuesto carbonílico α,ß-insaturado. Cabe aclarar que no siempre es necesaria la acidificación del medio de reacción y que en muchas reacciones de condensación se obtiene el producto deshidratado de manera espontánea (esto depende de la estabilidad relativa de los posibles productos de la condensación).

‘El carbonilo de las cetonas puede reaccionar con alquenos en cicloadiciones [2 + 2] para formar oxetanos (Reacción de Paterno-Büchi)

Nomenclatura de Cetonas

Nomenclatura sustitutiva.

En la nomenclatura de cetonas para nombrarlas se toma en cuenta el número de átomos de carbono y se cambia la terminación por ONA, indicando el carbono que lleva el grupo carbonilo (CO). Además se debe tomar como cadena principal la de mayor longitud que contenga el grupo carbonilo y luego se enumera de tal manera que éste tome el localizador más bajo.

Nomenclatura radicofuncional

Nomenclatura radicofuncional en cetonas asimétricas.

Otro tipo de nomenclatura para las cetonas, consiste en nombrar las cadenas como sustituyentes, ordenándolas alfabéticamente, se nombran los radicales y se aumenta la palabra CETONA. Si los dos radicales son iguales es una cetona simétrica, y si los radicales son diferentes es una cetona asimétrica.

Nomenclatura radicofuncional en cetonas simétricas.

Nomenclatura radicofuncional en cetonas asimétricas.

Nomenclatura en casos especiales

Cadenas con 2 o más grupos CO. Nomenclatura sustitutiva.

Cadenas con dos o más grupos CO. Nomenclatura radicofuncional.

Casos especiales de cetonas con otro tipo de nomenclatura.

En los casos en los que existen dos o más grupos carbonilos en una misma cadena, se puede usar la nomenclaruta sustitutiva. En esta nomenclatura si existen dos o más grupos CO aumentamos los prefijos (di, tri, tetra, etc.), antes de la terminación -ona.

Así como en la nomenclatura sustitutiva, también en la nomenclatura radicofuncional, si exísten dos o más grupos CO en una misma cadena se nombra normalmente los radicales y se antepone el prefijo (di, tri, tetra, etc) a la palabra cetona.

Para algunos compuestos en los que el grupo carbonilo CO se encuentra directamente unido a un anillo bencénico o naftalénico se puede utilizar las nomenclaturas ya antes nombradas y también este otro tipo de nomenclatura que consiste en indicar los grupos:

CH3-CO-

CH3-CH2-CO-

CH3-CH2-CH2-CO- , entre otros.

Mediante los nombres aceto, propio, butiro, etc. y agregarles la terminación fenona o naftona.

Cadenas con 2 o más grupos CO. Nomenclatura sustitutiva.

Cadenas con dos o más grupos CO. Nomenclatura radicofuncional.

Casos especiales de cetonas con otro tipo de nomenclatura.

Nomenclatura de cetonas que actúan como radicales dentro de la cadena

Cadenas con cetonas que no gozan de prioridad debido a la existencia de otros grupos funcionales más importantes. Nomenclatura con prefijo oxo.

La nomenclatura ya antes nombrada se toma para casos considerados en que la función cetona tiene prioridad, pero cuando la cetona no es el grupo funcional principal, si no que hay otra función u otras funciones con mayor preferencia se emplea esta nomenclatura: Para indicar al grupo CO se emplea el prefijo OXO:

Cadenas con cetonas que no gozan de prioridad debido a la existencia de otros grupos funcionales más importantes. Nomenclatura con prefijo oxo.

CONCLUSION

Cuando se escriben las fórmulas sin desarrollar, cabe el riesgo de confundir un grupo alcohol con el grupo aldehído. Para evitar esta confusión, en los aldehídos se escribe en último lugar el átomo de oxígeno: R-CHO, mientras que en los alcoholes se escribe en último lugar el hidrógeno: R-COH.

Los aldehídos son lábiles, es decir, sustancias muy reactivas y se convierten con facilidad en ácidos, por oxidación, o en alcoholes, por reducción y se disuelven con facilidad en agua.

Las cetonas se pueden oxidar para formar ésteres

...

Descargar como  txt (26.9 Kb)  
Leer 15 páginas más »
txt