Características de los vectores
emilioapaezTesina10 de Junio de 2013
2.975 Palabras (12 Páginas)495 Visitas
Índice
Pág.
Introducción
Vectores
Magnitudes vectoriales
Notación
Clasificación de vectores
Componentes de un vector
Representación gráfica de los vectores
Producto por un escalar
Operaciones con vectores
Suma de vectores
Producto de un vector por un escalar
Producto escalar
Producto vectorial
Derivada ordinaria de un vector
Derivada covariante de un vector
Ángulo entre dos vectores
Descomposiciones de un vector
Cambio de base vectorial
Requerimientos físicos de las magnitudes vectoriales
Conclusión
Bibliografía
Introducción
Los objetivos principales de este trabajo son aprender cuales son las formas de expresar un vector y así cuando ya las conozcamos aprender acerca de las características de los vectores.
Tanto así que también existen objetivos secundarios los cuales pueden ser que a la larga aprendemos las aplicaciones de los vectores en tres dimensiones para nuestra vida diaria.
Vectores
En física, un vector (también llamado vector euclidiano o vector geométrico) es una herramienta geométrica utilizada para representar una magnitud física definida por su módulo (o longitud), su dirección (u orientación) y su sentido (que distingue el origen del extremo). Los vectores en un espacio euclídeo se pueden representar geométricamente como segmentos de recta dirigidos («flechas») en el plano o en el espacio .
En matemáticas se define un vector como un elemento de un espacio vectorial, esta noción es más abstracta y para muchos espacios vectoriales no es posible representar sus vectores mediante el módulo, la longitud y la orientación (ver espacio vectorial). En particular los espacios de dimensión infinita sin producto escalar no son representables de ese modo.
Algunos ejemplos de mangitudes físicas que son magnitudes vectoriales: la velocidad con que se desplaza un móvil, ya que no queda definida tan sólo por su módulo (lo que marca el velocímetro, en el caso de un automóvil), sino que se requiere indicar la dirección y el sentido (hacia donde se dirige); la fuerza que actúa sobre un objeto, ya que su efecto depende, además de su intensidad o módulo, de la dirección en la que actúa; también, el desplazamiento de un objeto.
Un vector queda definido por su módulo, dirección y sentido: desde A hasta B.
Magnitudes vectoriales
Frente a aquellas magnitudes físicas, tales como la masa, la presión, el volumen, la energía, la temperatura, etc; que quedan completamente definidas por un número y las unidades utilizadas en su medida, aparecen otras, tales como el desplazamiento, la velocidad, la aceleración, la fuerza, el campo eléctrico, etc., que no quedan completamente definidas dando un dato numérico, sino que llevan asociadas una dirección. Estas últimas magnitudes son llamadas vectoriales en contraposición a las primeras llamadas escalares.
Las magnitudes vectoriales quedan representadas por un ente matemático que recibe el nombre de vector. En un espacio euclidiano, de no más de tres dimensiones, un vector se representa por un segmento orientado. Así, un vector queda caracterizado por los siguientes elementos: su longitud o módulo, siempre positivo por definición, y su dirección, la cual puede ser representada mediante la suma de sus componentes vectoriales ortogonales, paralelas a los ejes de coordenadas; o mediante coordenadas polares, que determinan el ángulo que forma el vector con los ejes positivos de coordenadas.
Se representa como un segmento orientado, con una dirección, dibujado de forma similar a una "flecha". Su longitud representa el módulo del vector, la recta indica la dirección, y la "punta de flecha" indica su sentido.
Representación gráfica de una magnitud vectorial, con indicación de su punto de aplicación y de los versores cartesianos.
Notación
Las magnitudes vectoriales se representan en los textos impresos por letras en negrita, para diferenciarlas de las magnitudes escalares que se representan en cursiva. En los textos manuscritos, las magnitudes vectoriales se representan colocando una flecha sobre la letra que designa su módulo (el cual es un escalar).
Ejemplos
• ... representan, respectivamente, las magnitudes vectoriales de módulos A, a, ω, ... El módulo de una magnitud vectorial también se representa encerrando entre barras la notación correspondiente al vector: ...
• En los textos manuscritos se escribe: ... para los vectores y ... o ... para los módulos.
Cuando convenga, se representan la magnitud vectorial haciendo referencia al origen y al extremo del segmento orientado que la representa geométricamente; así, se designan los vectores representados en la Figura 2 en la forma , ... resultando muy útil esta notación para los vectores que representan el desplazamiento.
Además de estas convenciones los vectores unitarios o versores, cuyo módulo es la unidad, se representan frecuentemente con un circunflejo encima, por ejemplo .
Clasificación de vectores
Según los criterios que se utilicen para determinar la igualdad o equipolencia de dos vectores, pueden distinguirse distintos tipos de los mismos:
• Vectores libres: no están aplicados en ningún punto en particular.
• Vectores deslizantes: su punto de aplicación puede deslizar a lo largo de su recta de acción.
• Vectores fijos o ligados: están aplicados en un punto en particular.
Podemos referirnos también a:
• Vectores unitarios: vectores de módulo unidad.
• Vectores concurrentes o angulares: son aquellas cuyas direcciones o líneas de acción pasan por un mismo punto. También se les suele llamar angulares por que forman un ángulo entre ellas.
• Vectores opuestos: vectores de igual magnitud y dirección, pero sentidos contrarios.1 En inglés se dice que son de igual magnitud pero direcciones contrarias, ya que la dirección también indica el sentido.
• Vectores colineales: los vectores que comparten una misma recta de acción.
• Vectores paralelos: si sobre un cuerpo rígido actúan dos o más fuerzas cuyas líneas de acción son paralelas.
• Vectores coplanarios: los vectores cuyas rectas de acción son coplanarias (situadas en un mismo plano).
Componentes de un vector
Un vector en el espacio euclídeo tridimensional se puede expresar como una combinación lineal de tres vectores unitarios o versores perpendiculares entre sí que constituyen una base vectorial.
En coordenadas cartesianas, los vectores unitarios se representan por , , , paralelos a los ejes de coordenadas x, y, z positivos. Las componentes del vector en una base vectorial predeterminada pueden escribirse entre paréntesis y separadas con comas:
o expresarse como una combinación de los vectores unitarios definidos en la base vectorial. Así, en un sistema de coordenadas cartesiano, será
Estas representaciones son equivalentes entre sí, y los valores ax, ay, az, son las componentes de un vector que, salvo que se indique lo contrario, son números reales.
Una representación conveniente de las magnitudes vectoriales es mediante un vector columna o un vector fila, particularmente cuando están implicadas operaciones matrices (tales como el cambio de base), del modo siguiente:
Con esta notación, los vectores cartesianos quedan expresados en la forma:
El lema de Zorn, consecuencia del axioma de elección, permite establecer que todo espacio vectorial admite una base vectorial, por lo que todo vector es representable como el producto de unas componentes respecto a dicha base. Dado un vector sólo existen un número finito de componentes diferentes de cero.
Representación gráfica de los vectores
Aunque hay quien no recomienda el uso de gráficos para evitar la confusión de conceptos y la inducción al error, sin investigación que lo corrobore, también es cierto que la memoria se estimula con mejores resultados. Para ello:
• Se llama vector a la representación visual con el símbolo de flecha( un segmento y un triángulo en un extremo).
• La rectitud visual de una flecha o curvatura de la misma, no la hace diferente en símbolo si los dos extremos permanecen en el mismo lugar y orden.
• El que una flecha cierre en sí misma, indica la ausencia de efectos algebraicos.
• Para visualizar la suma de vectores se hará encadenándolos, es decir, uniendo el extremo que tiene un triángulo (final) del primer vector con el extremo que no lo tiene (origen) del segundo vector manteniendo la dirección y distancia, propias al espacio, de sus dos extremos, ya que estas dos cualidades los distingue visualmente de otros vectores.
• Los escalares se representarán con una línea de trazos a modo, exclusivamente, de distinción ya que no siempre pertenecen al espacio de vectores.
Se examinan cada uno de los casos que aparecen en la definición de las operaciones suma de vectores y producto por un escalar:
Suma de vectores
La definición suma de vectores en el orden u+v produce otro vector, es como encadenar, siempre visualmente, un vector u y luego uno v. Diremos que u+v se simplifica como un vector w o que w descompone como suma de vectores u y v.
1) Decir que u+v=v+u, es exigir que las dos sumas simplifiquen
...