ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

DERECHO Y BIOETICA


Enviado por   •  11 de Agosto de 2013  •  6.322 Palabras (26 Páginas)  •  354 Visitas

Página 1 de 26

Investigación con células Madre.

¿Qué es una célula madre?

Hipótesis Uno.

Una célula madre es una célula relativamente no especializada que, cuando se divide, puede hacer dos cosas: producir otra célula igual a sí misma o producir una variedad de células con funciones más especializadas. Por ejemplo, cualquiera de los tipos de células madre de nuestra sangre puede producir células rojas nuevas o células blancas o células de otro tipo, según lo que el cuerpo necesite. Estás células son como el tronco de una planta que se extiende en diferentes direcciones al crecer.

¿Qué es una célula madre?

Hipótesis Dos.

Las células madre son células que se encuentran en todos los organismos multicelulares1 y que tienen la capacidad de dividirse (a través de la mitosis) y diferenciarse en diversos tipos de células especializadas y de autor renovarse para producir más células madre. En los mamíferos, existen diversos tipos de células madre que se pueden clasificar teniendo en cuenta su potencia, a saber, el número de diferentes tipos celulares en los que puede diferenciarse. En los organismos adultos, las células madre y las células progenitoras actúan en la regeneración o reparación de los tejidos del organismo.

Tipos de células madre

Las células madre embrionarias pluripotentes se encuentran en la masa celular interna (ICM) del blastocisto. Estas células madre pueden convertirse en cualquier tejido del organismo, con exclusión de la placenta. Sólo las células de una etapa anterior del embrión, la mórula, son totipotentes, capaces de convertirse en todos los tejidos del cuerpo y la placenta.

Teniendo en cuenta su potencia, las células madre pueden dividirse en cuatro tipos:

Las células madre totipotentes pueden crecer y formar un organismo completo, tanto los componentes embrionarios (como por ejemplo, las tres capas embrionarias, el linaje germinal y los tejidos que darán lugar al saco vitelino), como los extraembrionarios (como la placenta). Es decir, pueden formar todos los tipos celulares. La célula madre totipotente por excelencia es el cigoto, formado cuando un óvulo es fecundado por un espermatozoide.

Las células madre pluripotentes no pueden formar un organismo completo, pero sí cualquier otro tipo de célula correspondiente a los tres linajes embrionarios (endodermo, ectodermo y mesodermo), así como el germinal y el saco vitelino. Pueden, por tanto, formar linajes celulares. Se encuentran en distintas etapas del desarrollo embrionario.

Las células madre pluripotentes más estudiadas son las células madre embrionarias (en inglés "Embryonic stem cells" o "ES cells") que se pueden aislar de la masa celular interna del blastocisto. El blastocisto está formado por una capa externa denominada trofoblasto, formada por unas 70 células, y una masa celular interna constituida por unas 30 células que son las células madre embrionarias que tienen la capacidad de diferenciarse en todos los tipos celulares que aparecen en el organismo adulto, dando lugar a los tejidos y órganos. En la actualidad se utilizan como modelo para estudiar el desarrollo embrionario y para entender cuáles son los mecanismos y las señales que permiten a una célula pluripotente llegar a formar cualquier célula plenamente diferenciada del organismo. Asimismo, están comenzando a ser utilizadas con éxito en terapias biomédicas.

Las células madre germinales son células madre embrionarias pluripotentes que se derivan de los esbozos gonadales del embrión. Estos esbozos gonadales se encuentran en una zona específica del embrión denominada cresta gonadal, que dará lugar a los óvulos y espermatozoides. Tienen una capacidad de diferenciación similar a las de las células madre embrionarias, pero su aislamiento resulta más difícil.

Las células madre multipotentes son aquellas que sólo pueden generar células de su misma capa o linaje de origen embrionario (por ejemplo: una célula madre mesenquimal de médula ósea, al tener naturaleza mesodérmica, dará origen a células de esa capa como miocitos, adipocitos u osteocitos, entre otras). Otro ejemplo son las células madre hematopoyéticas - células madre de la sangre que puede diferencirse en los múltiples tipos celulares de la sangre.

Las células madre unipotentes, también llamadas células progenitoras son células madre que tiene la capacidad de diferenciarse en sólo un tipo de células.9 Por ejemplo las células madre musculares, también denominadas células satélite sólo pueden diferenciarse en células musculares.Además de por el criterio de potencia, las células madre también pueden clasificarse en cuanto a si se encuentran en el embrión o en tejidos adultos.

Las células madre adultas se encuentran en tejidos y órganos adultos y que poseen la capacidad de diferenciarse para dar lugar a células adultas del tejido en el que se encuentran. En humanos, se conocen hasta ahora alrededor de 20 tipos distintos de células madre adultas, que son las encargadas de regenerar los tejidos en continuo desgaste (como la piel o la sangre) o tejidos que han sufrido un daño (como por ejemplo el hígado). En esta clasificación se incluyen células madre multipotentes, como las células madre hematopoyéticas de la médula ósea (encargadas de la formación de la sangre). En la misma médula osea, aunque también en sangre del cordón umbilical, en sangre periférica y en la grasa corporal se ha encontrado otro tipo de células madre adultas, denominadas mesenquimales que puede diferenciarse en numerosos tipos de células de los tres derivados embrionarios (musculares, vasculares, nerviosas, hematopoyéticas, óseas, etc). Aunque aún no se ha podido determinar su relevancia fisiológica se están realizando abundantes ensayos clínicos para sustituir tejidos dañados (corazón) por derivados de estas células.

Métodos de obtención de células madre

Existen diferentes técnicas para la obtención de células madre. Las células madre embrionarias y algunas células madre adultas pueden aislarse desde su localización original en embriones o tejidos y mantenerse en condiciones especiales de cultivo de manera más o menos indefinida. Las fuentes que se utilizan de manera rutinaria o que han empezado a postularse son:

Embriones crioconservados: La criopreservación o crioconservación es un método que utiliza nitrógeno líquido (-196 °C) para detener todas las funciones celulares y así poderlas conservar durante años. Estos embriones son procedentes de los tratamientos de reproducción humana asistida, que cuando se fecundan más de los necesarios pueden ser donados por los pacientes que se someten a este tratamiento. 10 Estos embriones criopreservados en fase de blastocisto pueden conservarse durante cinco años, según lo reglamenta el R.D. 413/1996 [1].

Blastómeros individuales: Con esta técnica, probada primero en ratones y después en humanos, se consigue no destruir el embrión. Se utilizaron óvulos fecundados de ratón que se dejaron crecer hasta que tuviesen de 8 a 10 células. Una de estas células se extrae y se cultiva. Con esta técnica se ha logrado obtener dos líneas celulares estables que mostraban un cariotipo normal y presentaban marcadores característicos de pluripotencialidad. El embrión del que se obtiene esta célula es completamente viable por lo que se puede implantar en un útero y seguir un desarrollo normal.

Partenogénesis: Este proceso reproductivo no se da en mamíferos. Sin embargo, la partenogénesis puede ser inducida en mamíferos mediante métodos químicos o físicos in vitro. Como resultado de esta activación, se obtiene una masa celular denominada partenote de las que se pueden aislar células madre pluripotentes. Esta técnica sólo es aplicable en mujeres.12

Obtención a base de donantes cadavéricos: Recientes investigaciones han descrito que las [células madre musculares] sobreviven y mantienen sus propiedades tras un proceso de congelación post-morten.

Reprogramación de células somáticas

Además de la expansión de células madre obtenidas del organismo, se han desarrollado técnicas para reprogramar células somáticas y convertirlas en células madre pluripotentes.

Reprogramación de células somáticas por transferencia o trasplante nuclear. Consiste en extraer un núcleo de un óvulo no fertilizado y sustituirlos por el núcleo de una célula somática adulta. Al encontrarse en un ambiente propicio, el citoplasma del óvulo, este núcleo es capaz de reprogramarse. Una ventaja de esta técnica (en sus aplicaciones biomédicas) es obtener células madre que contengan la misma dotación genética que el paciente y evitar así problemas de rechazo. Esta técnica se ha realizado con éxito en múltiples especies animales, no en humanos. Este método se ha utilizado con éxito para lo que conoce como clonaciónterapéutica.

Fusión de células somáticas y células madre embrionarias. Los híbridos entre diversas células somáticas y células madre embrionarias comparten muchas características con las células madre, lo que indica que el fenotipo pluripotente es dominante en los productos resultantes de la fusión. Este tipo de células híbridas, también llamadas heterocariontes son valiosas para el estudio de los mecanismos genéticos y bioquímicos implicados en la pluripotencia.

Reprogramación por factores de transcripción definidos o Células madre pluripotentes inducidas. En el año 2006 el grupo del doctor Shin'ya Yamanaka, de la Universidad de Kyoto, demostró que es posible reprogramar células somáticas adultas hasta células madre mediante la expresión ectópica de factores de transcripción, generando las denominadas células madre pluripotentes inducidas o células iPS ( de induced pluripotent stem cells en inglés). En el protocolo original, se reprogramaron con éxito fibroblastos embrionarios de ratón (MEFs) y fibroblastos adultos tras infección con retrovirus que cofificaban para los factores de transcripción Oct4, Sox2, c-myc y Klf4.15 16

Células del cordón umbilical

Las células madre del cordón umbilical se consideran como células madre adultas. Éstas son células hematopoyéticas; crean células de la sangre y del sistema inmunológico. Son mucho más fáciles de obtenerse en comparación con las células de la médula ósea. A pesar de que las células de la médula ósea actúan más rápido que las células del cordón umbilical, las células del cordón umbilical no necesitan una compatibilidad al 100% con el paciente. En cambio las células de la médula ósea sí. Otras ventajas de las células de cordón umbilical son que su extracción no es dolorosa, se pueden usar con otros miembros de la familia sin ningún problema y son inmunológicamente inmaduras, es por esto que no necesitan una compatibilidad al 100% con el paciente.

Células madre del líquido amniótico

Gracias a los últimos avances científicos se demostró que el líquido amniótico contiene células de tejidos embrionarios y extraembrionarios diferenciadas y no diferenciadas derivadas del ectodermo, del mesodermo y del endodermo [2]. La tipología y las características de las células del líquido amniótico varían según el momento de la gestación y en función de la existencia de posibles patologías fetales. Recientemente, se ha tenido constancia de experimentos que demuestran la presencia de células madre fetales mesenquimales con potencial diferenciador hacia elementos celulares derivados de tres hojas embrionarias, por ejemplo. Las células madre de líquido amniótico se expanden fácilmente en cultivo, mantienen la estabilidad genética y se pueden inducir a la diferenciación (estudios de Paolo De Coppi, Antony Atala, Giuseppe Simoni etc) también en células hematopoyéticas[3]. Por eso representan una nueva fuente de células que podría tener múltiples aplicaciones en ingeniería de los tejidos y en la terapia celular, sobre todo para el tratamiento de anomalías congénitas en el periodo perinatal.

Las células madre de líquido amniótico no presentan controversia ética [4]y pueden conservarse para uso propio.

Tratamientos con células madre

El científico japonés Shinya Yamanaka, galardonado con el Premio Nobel de Medicina de 2012, advirtió en declaraciones a los periodistas de los "enormes" riesgos de ciertas "terapias con células madre" que no han sido ensayadas y que están siendo ofrecidas en las clínicas y hospitales de un número creciente de países.

Las células madre podrían tener multitud de usos clínicos y podrían ser empleadas en medicina regenerativa, inmunoterapia y terapia génica. De hecho en animales se han obtenido grandes éxitos con el empleo de células madre para tratar enfermedades hematológicas, diabetes de tipo 1, párkinson, destrucción neuronal e infartos. Pero aun para el 2012 no existen estudios concluyentes en humanos y la Agencia Española del Medicamento, dependiente del Ministerio de Sanidad advertió en octubre de 2012 sobre el riesgo de su uso indiscriminado.

Algunos descubrimientos médicos permiten creer que los tratamientos con células madre pueden curar enfermedades y aliviar el dolor. Existen algunos tratamientos con células madre, pero la mayoría todavía se encuentran en una etapa experimental. Investigaciones médicas anticipan que un día con el uso de la tecnología, derivada de investigaciones para las células madre adultas y embrionarias, se podrá tratar el cáncer, diabetes, lesiones de la espina dorsal y daños en los músculos, entre otras enfermedades. Muchos tratamientos prometedores para enfermedades graves han sido aplicados usando células madre adultas. La ventaja de las células madre adultas sobre las embrionarias es que no hay problema en que sean rechazadas, porque normalmente las células madre son extraídas del paciente. Todavía existe un gran problema tanto científico como ético sobre esto.

En los últimos años se está investigando en la proliferación in vitro de las células madre de cordón umbilical para aumentar el número de células madre y cubrir la necesidad para un trasplante. Estos estudios son muy prometedores y pueden permitir en un futuro utilizar células madre de cordón umbilical en terapia génica: podemos así tratar enfermedades causadas por la deficiencia o defecto de un determinado gen. Introduciendo un determinado gen en la proliferación de las células madre in vitro y trasplantar tales células en el paciente receptor. El uso de otros tipos de células como portadores de genes buenos en pacientes con enfermedades causadas por deficiencias o déficits genéticos, se está experimentando clínicamente.

Tratamientos del cáncer

Recientemente han sido utilizadas las células madre encontradas en la sangre del cordón umbilical para tratar pacientes con cáncer. Durante la quimioterapia, la mayoría de las células en crecimiento mueren por los agentes cito tóxicos. El efecto secundario de la quimioterapia es lo que los trasplantes de células madre tratan de revertir; la sustancia que se encuentra sana dentro del hueso del paciente, el tuétano, es remplazada por aquellas perdidas en el tratamiento. En todos los actuales tratamientos que usan células madre, obtener células madre de un donante con el mismo tipo de sangre es preferible a que usar las del paciente mismo. Solo si (siempre como último recurso y si no se encontró un donante con el mismo tipo de sangre) es necesario para el paciente usar su propias células madre y si el paciente no tiene guardada su propia colección de células madre (sangre del cordón umbilical), entonces la sustancia contenedora en los huesos será removida antes de la quimioterapia, y re inyectada después.

Inmunohematología

El trasplante de células madre hematopoyéticas se ha usado desde hace 50 años con éxito para tratar múltiples enfermedades: talasemias, anemia falciforme, anemia de Fanconi, errores congénitos del metabolismo, anemia aplásica grave, inmunodeficiencias combinadas graves (SCID)... También han sido empleadas para el tratamiento de tumores: leucemias agudas mieloides y linfoides, leucemias crónicas mieloides, mielodisplasias, linfomas, mielomas, tumores sólidos de riños, mama, ovario y neuroblastoma, etc.

Esto se consigue mediante el trasplante de médula ósea. La médula ósea contiene las células madre precursoras de las células sanguíneas y linfáticas. Se solía sacar del hueso de la cadera, pero actualmente se está sacando de la sangre periférica tras tratamiento con factores estimulantes del crecimiento. El éxito del trasplante de médula, al igual que en cualquier otro trasplante, depende de la compatibilidad HLA. Pero además de poder producirse rechazo del individuo al tejido trasplantado, el trasplante de médula ósea presenta la particularidad de que también puede darse en sentido inverso, rechazo del tejido trasplantado al individuo (GVHD: graft versus host disease).

Sin embargo el rechazo GVHD puede presentar una ventaja y ser de interés como inmunoterapia, ya que puede reconocer a las células malignas con las que compite como extrañas y permitir una remisión más rápida de la leucemia.

Tras destruir la médula por radiación o quimioterapia se realiza el trasplante. A las dos semanas aparecen nuevas células sanguíneas y tras varios meses (autólogos) o más de un año (alotrasplantes) se restituye la función inmune.

También es posible el empleo de células madre de cordón con la misma finalidad.

Controversia sobre las células madre

La controversia sobre las células madre es el debate ético sobre las investigaciones de la creación, uso y destrucción de las células madre embrionarias. La oposición a las investigaciones dice que esta práctica puede llevar a la clonación y fundamentalmente a la desvalorización de la vida humana. Contrariamente, las investigaciones médicas opinan que es necesario proceder con las investigaciones de las células madre embrionarias porque las tecnologías resultantes podrían tener un gran potencial médico, y que el exceso embrionario creado por la fertilización in vitro puede ser donado para las investigaciones. Esto en cambio, produjo conflictos con el movimiento Pro-Life (Pro-Vida), quienes adjudican la protección de embriones humanos. El constante debate ha hecho que autoridades de todo el mundo busquen regularidad en los trabajos y marquen el hecho de que las investigaciones de las células madre embrionarias representan un desafío ético y social.

De acuerdo con muchas religiones y sistemas éticos, la vida humana comienza en la fecundación. Según sus argumentos, cualquier medida intencional para detener el desarrollo después de la concepción se considera como la destrucción de una vida humana. Otros críticos no tienen un problema moral con la investigación con células madre humanas, pero tienen miedo de un precedente para la experimentación humana. Algunos críticos apoyan la idea de la investigación, pero quieren que se impongan estrictas normas legales que impidan la experimentación genética con humanos, como la clonación y que garanticen que los embriones humanos sólo se obtengan a través de fuentes apropiadas. Prevenir que la investigación con células madre humanas se convierta en una pendiente resbaladiza hacia experimentos genéticos humanos es considerado por la mayoría de la sociedad un punto importante en la controversia de las células madre humanas.

Dentro de la comunidad médica, existen diferentes posturas, entre ellas que “los blastocitos o embriones son organismos vivos que dentro de 9 meses serán seres humanos con derechos, por esto, no es ético el destruir el blastocito o embrión para obtener las células madre”, mientras que otros consideran que en la edad temprana de un embrión lo que se tiene es un brote de células con su masa interna.

Además de los problemas éticos que conlleva la destrucción del blastocito, también se encuentra anti-ético el hecho de que se necesiten una cantidad alta de óvulos para la creación de embriones, que serán destruidos luego, y cómo se obtienen esos óvulos. La donante de óvulos es tratada primero con algunas drogas y hormonas para que ésta cree muchos óvulos que serán donados. Estas drogas pueden traer problemas de salud lo cual es anti-ético hacer daño a un paciente con conocimiento.

Las células madre salvan vidas.

Una de las decisiones más trascendentales durante la preparación del nacimiento de tu bebé puede ser la de conservar las células madre de su cordón umbilical. Las células madre tienen la capacidad de producir los componentes de la sangre, como son los glóbulos blancos, glóbulos rojos y plaquetas.

Almacenar las células madre de tu bebé significa la posibilidad de tener acceso a tratamientos para diversas enfermedades como leucemias, linfomas e inmunodeficiencias, entre otras.

La sangre del cordón umbilical se obtiene únicamente en el momento del nacimiento, sin dolor ni riesgo para la madre o el bebé. Para conocer más de los beneficios de almacenar las células madre de tu bebé infórmate con el banco líder en conservación cryo-celular de células madre.

Célula madre pluripotente inducida.

Esquema de la generación de células madre pluripotenciales inducidas (iPS) a partir de células adultas (reprogramación).

(1) Se aíslan y cultivan las células adultas que se van a utilizar como dianas.

(2) Se hace la transferencia de genes exógenos provenientes de células madres a las células diana por medio de vehículos retrovirales. Las células de color rojo indican que son células diana transfectadas que ya expresan los genes exógenos.

(3) Se cultivan las células transfectadas con métodos de cultivo de células madre usando células inactivadas como capas alimentadoras (color gris).

(4) Un subgrupo pequeño de estas células transfectadas se transforman en células madres pluripotenciales inducidas (iPS) y desde ese momento en adelante producen colonias de células madre.

Las células madre pluripotentes inducidas

Normalmente abreviadas como células iPS, por sus siglas en inglés: "induced Pluripotent Stem" ) son un tipo de células madre con características pluripotenciales (capaces de generar la mayoría de los tejidos) derivadas artificialmente de una célula diana que inicialmente no era pluripotencial. Por lo general se utiliza como diana una célula adulta diferenciada (diferenciación celular) procedente de un tejido, sobre la que se induce la expresión de varios genes exógenos, tales como Oct4, Sox2, c-Myc y Klf4, capaces de des-diferenciarla. Se denomina reprogramación a esta des-diferenciación. Las células iPS son capaces de diferenciarse a células de tejidos pertenecientes a las tres capas germinales de un embrión (embriogénesis humana) natural (endodermo, mesodermo y ectodermo) y de formar teratomas y ratones quiméricos ó quimeras (quimerismo).

Se ha demostrado que las células iPS son idénticas en muchos aspectos y similares en otros, a las células madre embrionarias (normalmente abreviadas como ES, por sus siglas en inglés: "Embryonic Stem"). Por ejemplo, son iguales en morfología, expresión de ciertos genes y proteínas, patrones de metilación del ADN, tiempo de duplicación celular y capacidad de diferenciación a células de otros tejidos. Sin embargo, el mecanismo mediante el cual se inducen y su relación con las células ES sigue aún en investigación (Liu, et al., 2011).

Las células iPS se obtuvieron por primera vez en el año 2006 a partir de células de ratones (Takahashi &Yamanaka, 2006), y en 2007 a partir de células humanas (Takahashi, et al., 2007). En 2006, se describió por primera vez este proceso a partir de fibroblastos de ratón utilizando retrovirus que vehiculizaban e inducían la expresión de varios genes exógenos. Recientemente se ha publicado una revisión sobre esta primera metodología (Miller &Schlaeger, 2011). Este logro se considera uno de los avances más importantes de la investigación con células madre, ya que permite obtener células madres pluripotenciales a partir de células adultas. Las iPS tienen aplicaciones como modelos para estudio de enfermedades, posibles usos terapéuticos (disminuyendo el rechazo en los trasplantes y sin la controversia del uso de embriónes que tienen las células ES) e investigaciones básicas .

Primeros métodos de reprogramación de células adultas

Esquema de la generación de células de tejidos diferenciadas a partir de las células madre naturales.

Todas las células adultas que componen un cuerpo de ratón ó humano se generan a partir de una célula inicial totipotencial a través de células madre pluripotenciales, que solo persisten en la época embrionaria (células ES), y después a partir de células madre multipotenciales que persisten en el adulto. La reprogramación de células adultas a células pluripotenciales (células iPS) ha conseguido la reversibilidad parcial de este proceso natural de diferenciación celular

Primera generación en ratones

Las células iPS se derivan de células adultas por transferencia (transfección) de varios genes exógenos asociados a células ES. Generalmente para una transferencia eficiente se utilizan retrovirus que actúan como vehículos o vectores de los genes exógenos. Los genes exógenos transferidos son principalmente los correspondientes a factores de transcripción (transcripción genética) asociados a las células ES. Después de 3–4 semanas , un pequeño porcentaje de las células transferidas comienzan a diferenciarse volviéndose morfológica y bioquímicamente similares a las células ES. Las células iPS o células adultas reprogramadas se aislan por selección con un gen de resistencia a antibióticos y por confirmación de su identidad (ver después) .

El equipo de Shinya Yamanaka en la Universidad de Kyoto (Japon) en 2006, fue el primero en generar células iPS . Para ello usaron como células diana fibrobastos de ratón, como genes exógenos los previamente identificados como expresados en las células ES, y como vehículos ó vectores los retrovirus. Cuatro genes codificando factores de transcripción resultaron esenciales para producir células iPS: los denominados Oct-3/4, Sox2, c-Myc, y Klf4. De las células tratadas con retrovirus codificando dichos genes se seleccionaron aquellas que los expresaban con antibioticos y por la presencia del gen Fbx15(células Fbx15+) . Sin embargo estas células iPS tenían patrones de metilación del ADN distintos de los de las células ES y además no producían ratones quiméricos viables.

Segunda generación en ratones

En 2007, el mismo grupo publicó un trabajo junto con otros grupos de investigación independients de Harvard, MIT, y la Universidad de California, que demostraba que se podían obtener células iPS a partir de fibroblastos de ratón con capacidad de formar quimeras viables utilizando el gen Nanog en vez del Fbx15. Los patrones de metilación de DNA y la producción de ratones quiméricos viables indicaron que Nanog es un determinante importante de la pluripotencia celular (Maherali, et al., 2007, Okita, et al., 2007, Takahashi &Yamanaka, 2006, Wernig, et al., 2007). Desafortunadamente, debido a que uno de los cuatro genes utilizados (c-Myc) es oncogénico, el 20% de los ratones quiméricos desarrolló cancer. En un estudio posterior, se demostró que se pueden mantener células iPS sin c-Myc que no desarrollen cancer, pero el procedimento es menos eficiente (Nakagawa, et al., 2008).

Producción de células iPS humanas

En 2007, también se publicó el avance más importante, ya que se habían podido generar células iPS humanas a partir de células humanas adultas. Los resultados se obtuvieron por dos equipos de investigación independientes. Uno dirigido por Yamanaka en Japon transformó fibroblastos humanos en células iPS utilizando los genes: Oct3/4, Sox2, Klf4, y c-Myc vehiculizados en retrovirus (Takahashi, et al., 2007), mientras otro por Thomson en USA usó los genes Oct4, Sox2, Nanog, y LIN28 vehiculizados en lentivirus (Yu, et al., 2007).

Problemas de los primeros métodos de reprogramación celular

Aunque los primeros métodos utilizando genes codificadores de factores de transcripción demostraron que las células adultas diferenciadas se pueden reprogramar a células iPS, todavía existen problemas importantes, tales como i) eficiencia, ii) mutagénesis insercional, iii) tumores y iv) reprogramación incompleta.

Eficiencia: es un problema que afecta al proceso de obtención de células iPS. La eficiencia o porcentaje de obtención de células reprogramadas es todavía muy bajo. Por ejemplo, el porcentaje de reprogramación en el estudio en ratones de Yamanaka fue solo del 0.1-1% (Takahashi &Yamanaka, 2006). Este porcentaje tan bajo puede deberse a la necesidad de que coincidan distintos niveles de expresión de varios de los genes exógenos transfectados. También podría ser debido a la necesidad de cambios genéticos o epigenéticos en la población de células diana tal y como sugiere la necesidad de tiempos largos de cultivo. La optimización de la reprogramación sigue siendo objeto de estudios actuales (Chen, et al., 2011, Dick, et al., 2011) y constantemente se producen nuevos avances. Por ejemplo, para obtener una máxima eficiencia, en los primeros métodos descritos se necesitaba crecer las células iPS sobre una capa de células alimentadoras que aunque inactivadas suponían una posible fuente de contaminación. Nuevos métodos , han conseguido hacer crecer células iPS en ausencia de dichas capas en buenas condiciones (Chung, et al., 2011) y durante tiempos largos (Nemati, et al., 2011) .

Mutagénesis insercional.

Es un problema que afecta a las posibles aplicaciones en medicina regenerativa. La insercion de los genes exógenos codificantes de los factores de transcripción en el genoma de la célula diana limita su utilidad debido al riesgo de mutagénesis insercional en el genoma de las células diana (Selvaraj, et al., 2010). Las mutaciones introducidas pueden ser deletéreas o inducir tumores. Una estrategia para evitar la mutagénesis insercional es el uso de vectores alternativos. Para ello se han explorado plásmidos , adenovirus, y transposones, que aunque reducen las posibilidades de mutagénesis insercional, tienen una eficiencia de reprogramación menor (Okita, et al., 2008, Stadtfeld, et al., 2008, Woltjen, et al., 2009). Otras estrategias que emplean proteinas o ARN también tienen una eficiencia menor. Por último, el empleo de moléculas de bajo peso molecular que simulan el efecto de los factores de transcripción parece hoy por hoy la alternativa más esperanzadora.

Tumores.

Es un problema que afecta a las posibles aplicaciones en medicina regenerativa. Algunos de los genes reprogramadores son oncogenes, lo que aumenta la probabilidad de inducción de tumores. Aunque se pudo eliminar el c-Myc después de generar células iPS para eliminar la formaciónde tumores (Nakagawa, et al., 2008), se necesita profundizar en estos estudios. Parece existir un equilibrio entre la eficiencia de reprogramación y la formación de tumores, ya que la inactivación o eliminación del gen supresor de tumores p53, aumenta la eficiencia de reprogramación (Marion, et al., 2009).

Reprogramación incompleta.

Es un problema que afecta a las posibles aplicaciones en medicina regenerativa. Para reprogramar completamente una célula diferenciada de un tipo celular a otro, el codigo epigenético causante de la diferenciación celular debe ser "reformateado", lo que no siempre se consigue al 100% dependiendo de cada tipo de célula diana (Kim, et al., 2011). A pesar de estos inconvenientes, tres equipos independientes fueron capaces de generar células iPS que dieron origen a ratones derivados enteramente de células iPS inyectándolos a blastocistos tetraploides (Zhao, et al., 2009). Sin embargo, estudios de los perfiles de transcripción han demostrado que dicha equivalencia no siempre es completa (Li, et al., 2011, Narsinh, et al., 2011).

Métodos alternativos de reprogramación celular.

Para que un método de reprogramación sea práctico o incluso viable, las eficiencias o porcentajes de reprogramación (número de células reprogramadas respecto al total de células adultas diana iniciales) deben ser lo más altas posible. Por ejemplo, una eficiencia de reprogramación del 50-100 % sería optima, pero los primeros porcentajes de reprogramación estaban en el 0.1-1% (Takahashi &Yamanaka, 2006).

Las eficiencias de reprogramación dependen mayoritariamente de los vectores que se utilicen (Takahashi &Yamanaka, 2006). Los riesgos para el uso de células iPS en humanos también dependen en gran medida de los métodos utilizados. Aunque las transferencias con retrovirus son hasta ahora las que han obtenido una mayor eficiencia, dan lugar a la inserción al azar de los genes exógenos en el genoma de la célula diana, lo que puede producir mutagénesis insercional provocando inactivación de genes vitales o activación de oncogenes(Zhang, et al., 2011). Hasta ahora las alternativas a estas metodologías son:

i) Compuestos de bajo peso molecular,

ii) Adenovirus, plásmidos y transposones,

iii) Proteínas recombinates y;

iv) Móleculas ARN. Mejoras en estas nuevas metodologías que dieran lugar a mayores eficiencias podrían ayudar a generar células iPS más seguras y a encontrar soluciones a estos problemas. Quizá haya que diseñar nuevos métodos que combinen todas las ventajas conocidas.

Moléculas de bajo peso molecular

Una de las principales estrategias para evitar la mutagénesis insercional es el uso de moléculas de bajo peso molecular (comparado con las proteinas o los ADNs) como sustitutivos de los efectos de los factores de transcripción. Estas moléculas pueden incrementar la eficiencia de reprogramación compensando el efecto del factor reprogramador. Debido a que no son ADN, dichas moleculas también evitan la integración genómica aumentando así la seguridad. Aunque aún no se ha podido identificar una mezcla de moléculas que completamente reprograme las células adultas a pluripotentes, existen algunos ejemplos que aumentan la eficiencia o incluso pueden substituir algunos de los genes.

Los primeros estudios describiendo algunas de estas estrategias se realizaron en 2008. Por ejemplo, el ácido valproico, un inhibidor de la diacetilasa de las histonas, aunmentó la eficiencia de reprogramación unas 100 veces (Huangfu, et al., 2008). Se supone que el ácido valproico simula las señales del factor de transcripción c-Myc. Un tipo similar de mecanismo se ha propuesto para el BIX-01294, un inhibidor de la metiltransferasa de histonas que simula los efectos del Sox2 (Shi, et al., 2008). La simulación de otras señales es un tema de activa investigación (Chen, et al., 2011).

Otra estrategia se basó en el estudio de la ruta molecular natural de diferenciación de las células mesenquimales a epiteliales en la que intervienen TGFb (Factor de Transformación beta) y MEK (Kinasa de proteinas Epiteliales activada por Mitógenos). Primero se seleccionaron dos inhibidores de TGFb y MEK entre aquellos que no solo inhibían la diferenciación sino que también eran las más activos en reprogramación (SB431412 y PD0325901). Cuando se usaron estos dos inhibidores en combinación, aumentaron unas 100 veces la eficiencia de reprogramación. Después se investigó de una manera similar, la ruta molecular natural empleada para mantener la supervivencia celular. Así, después de ensayar en reprogramación varios compuestos que inhiben dicha ruta, se seleccionó el Thiazovivin. Usando una mezcla de estos 3 inhibidores se consiguió una mejora en la eficiencia de reprogramación de unas 200 veces (Lin, et al., 2009).

Por otra parte, el estudio de los mecanismos de reprogramación posiblemente aportará nuevas alternativas e ideas sobre este importante tema (Lin, 2011, Lin, et al., 2011).

Adenovirus, plásmidos y transposones.

Otra estrategia para evitar la formación de tumores ha sido el uso de vectores alternativos o no retrovirales, tales como los: adenovirus, plásmidos y transposones. Sin embargo, aunque los métodos basados en todos estos vectores alternativos evitan el uso de retrovirus, todavía requieren el uso de genes exógenos provocadores de tumores para obtener reprogramación.

Los adenovirus son únicos entre los vectores virales porque no incorporan ninguno de sus propios genes al genoma de la célula diana y por lo tanto evitan la mutagénesis insercional (Zhou &Freed, 2009). Otra ventaja de usar adenovirus es que solo necesitan estar presentes durante un breve tiempo para inducir la reprogramación. En 2008, se usó un adenovirus para vehiculizar los cuatro genes exógenos (factores de transcripción) a células de ratones obteniendo células idénticas a las ES (Stadtfeld, et al., 2008), demostrándose así que para obtener células iPS no es absolutamente necesaria la integración en el genoma de la célula diana de los genes exógenos.

En 2008, el equipo de Yamanaka demostró que la reprogramación también era posible empleando plásmidos en vez de retrovirus para transferir los cuatro genes exógenos (Okita, et al., 2010). En dichos trabajos, se describe cómo fueron capaces de transformar células de ratón con dos plásmidos, uno de ellos expresaba el c-Myc, mientras que el segundo expresaba Oct4, Klf4, y Sox2. Sin embargo, estos métodos son mucho menos eficientes que los basados en retrovirus y también tienen posibilidades de mutagénesis insercional aunque en menor proporción que los retrovirus.

Se ha intentado también el uso de algunos transposones . Por ejemplo, varios estudios han demostrado que los transposones denominados piggyBac pueden efectivamente transportar los genes de reprogramación sin introducir mutaciones indeseables en el genoma de la célula diana ya que efectúan una re-excisión de los genes exógenos evitando la mutagénesis insercional (Woltjen, et al., 2009).

Proteínas recombinantes

Una gran ventaja de este método es que evita los problemas de mutagénesis insercional, puesto que las proteinas no son ácidos núcleicos y no se pueden insertar en el genoma. En 2009, se demostró la generación de células iPS sin alteración genética de las células adultas originales mediante proteinas vehiculizadas a través de péptidos (Zhou, et al., 2009). Así se pudo demostrar que las proteinas recombinantes correspondientes a los factores de transcripción se podían usar para la reprogramación (Zhou, et al., 2009). Mientras que la transferencia de proteinas también induce pluripotencia, el método es más complicado y requiere dominar las técnicas de producción y purificación de proteinas recombinantes. Además su eficiencia es muy baja.

Moléculas RNA: Los micro ARNs son moléculas cortas complementarias a secuencias de ARN mensajero (ARNm) que bloquean la su traducción a proteinas, inhibiendo específicamente la expressión final de los genes. La expresión de moleculas micro ARN específicas de ES (tales como miR-291, miR-294 y miR-295) aumentaban la eficiencia de la reprogramación hasta un nivel similar al método que usa proteinas (Morrissey, et al., 2005). Los micro ARNs quizá actúan bloqueando la expresión de represores de los cuatro o alguno de los cuatro factores de transcripción de Yamanaka. Un obstáculo para el uso de la reprogramación por ARN es su inestabilidad. Sin embargo, se podrían usar ARNs con modificaciones estabilizadoras (5-metilguanosinas ó pseudouracilos), que además de ser más estables y tienen menor probabilidad de mutagénesis insercional. Otro obstáculo quizá más importante, es que los ARN exógenos provocan respuestas anti-virales innatas en las células diana.

Genes que inducen reprogramación

La generación de células iPS depende de que los genes adecuados se usen para la inducción de la reprogramación. Hasta ahora se han identificado los Oct-3/4 y varios miembros de la familia Sox (Sox1, Sox2, Sox3, Sox15) como genes indispensables para inducir la reprogramación. Por otra parte, genes tales como los de las familias de los factores Kruppel (Klf1, Klf2, Klf4, Klf5), Myc (c-myc, L-myc, N-myc), Nanog, y LIN28, se han identificado como genes implicados en aumentar la eficiencia de reprogramación. Más en detalle:

Genes indispensables en la reprogramación

Genes Oct-3/4:El Oct-3/4 (Pou5f1) es uno de los genes de la familia de los factores de transcripción de estructura octamérica, conocido por su papel en el mantenimiento de la pluripotencia y del potencial de diferenciación de las células ES. La ausencia de Oct-3/4 en células naturalmente Oct-3/4+, tales como los blastómeros y las células ES causa su diferenciación espontánea. Otros genes de la familia Oct , incluyendo Oct1 y Oct6, no producen inducción de la reprogramación, demostrando la especificidad de Oct-3/4.

Genes Sox: La familia de genes Sox está asociada al mantenimiento tanto de la pluripotencia como de la multipotencia mientras que los genes Oct-3/4 están exclusivamente implicados en el mantenimiento de la pluripotencia. El gen Sox2 fue el gen que se utilizó inicialmente, pero después se ha demostrado que otros genes de la familia Sox también se pueden usar. Por ejemplo el Sox1 induce células iPS con una eficiencia similar a Sox2, mientras que los genes Sox3, Sox15, y Sox18 también inducen células iPS pero con menor eficiencia.

Genes que aumentan la eficiencia de la reprogramación

Genes Kruppel(Klf): El gen Klf4 de la familia Klf fue identificado inicialmente por el grupo de Yamanaka como un factor de inducción de células iPS para ratón, aunque el grupo de Thomson comprobó que Klf4 no inducía células iPS humanas. Klf2 y Klf4 inducen células iPS con alta eficiencia mientras que Klf1 y Klf5 lo hacen con una eficiencia menor.

Genes Myc: La famila de genes Myc son oncogenes implicados en cancer. El gen c-Myc es un gen implicado en la inducción de células iPS de ratón y humanas. Sin embargo, después se ha podido comprobar que no es necesaria su presencia para mantener células iPS humanas (Nakagawa, et al., 2008). El uso de genes de la familia Myc en la inducción de células iPS humanas es problemático si se usaran para terapias clínicas ya que 25% de los ratones transplantados con células iPS inducidas con c-Myc desarrollaron teratomas letales. N-Myc y L-Myc también inducen células iPS con eficiencias similares a c-Myc.

Gen Nanog: El gen Nanog junto con Oct-3/4 y Sox2, se expresan en las células ES. Por ello fue sorprendente que el grupo de Yamanaka describiera inicialmente que Nanog no era necesario para la reprogramación, aunque el grupo de Thomson comprobó que también era posible su utilización.

Gen LIN28: LIN28 es una proteina que

...

Descargar como  txt (42.1 Kb)  
Leer 25 páginas más »
txt