Definición de matriz
blood83Tesis25 de Marzo de 2012
3.038 Palabras (13 Páginas)847 Visitas
Introducción
Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley introduce la notación matricial como una forma abreviada de escribir un sistema de m ecuaciones lineales con n incógnitas.
Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Además de su utilidad para el estudio de sistemas de ecuaciones lineales, las matrices aparecen de forma natural en geometría, estadística, economía, informática, física, etc...
La utilización de matrices (arrays) constituye actualmente una parte esencial dn los lenguajes de programación, ya que la mayoría de los datos se introducen en los ordenadores como tablas organizadas en filas y columnas : hojas de cálculo, bases de datos,...
Definición de matriz
Se llama matriz de orden m×n a todo conjunto rectangular de elementos aij dispuestos en m líneas horizontales (filas) y n verticales (columnas) de la forma:
Abreviadamente suele expresarse en la forma A =(aij), con i =1, 2, ..., m, j =1, 2, ..., n. Los subíndices indican la posición del elemento dentro de la matriz, el primero denota la fila (i) y el segundo la columna (j). Por ejemplo el elemento a25 será el elemento de la fila 2 y columna 5.
Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en Algunos tipos de matrices
Vamos a describir algunos tipos de matrices que aparecen con frecuencia debido a su utilidad, y de los que es conveniente recordar su nombre.
Atendiendo a la forma
Matriz fila: Es una matriz que solo tiene una fila, es decir m =1 y por tanto es de orden 1´n.
Ejemplo
Matriz columna: Es una matriz que solo tiene una columna, es decir, n =1 y por tanto es de orden m ´1.
Ejemplo
Matriz cuadrada: Es aquella que tiene el mismo número de filas que de columnas, es decir m = n. En estos casos se dice que la matriz cuadrada es de orden n, y no n ´ n.
Los elementos aij con i = j, o sea aii forman la llamada diagonal principal de la matriz cuadrada, y los elementos aij con i + j = n +1 la diagonal secundaria.
Ejemplo
Matriz traspuesta: Dada una matriz A, se llama traspuesta de A, y se representa por At, a la matriz que se obtiene cambiando filas por columnas. La primera fila de A es la primera fila de At , la segunda fila de A es la segunda columna de At, etc.
De la definición se deduce que si A es de orden m ´ n, entonces At es de orden n ´ m.
Ejemplo
Matriz simétrica: Una matriz cuadrada A es simétrica si A = At, es decir, si aij = aji " i, j.
Ejemplos
Matriz antisimétrica: Una matriz cuadrada es antisimétrica si A = –At, es decir, si aij = –aji " i, j.
Ejemplos
Atendiendo a los elementos
Matriz nula es aquella que todos sus elementos son 0 y se representa por 0.
Ejemplos
Matriz diagonal: Es una matriz cuadrada, en la que todos los elementos no pertenecientes a la diagonal principal son nulos.
Ejemplos
Matriz escalar: Es una matriz diagonal con todos los elementos de la diagonal iguales.
Ejemplos
Matriz unidad o identidad: Es una matriz escalar con los elementos de la diagonal principal iguales a 1.
Ejemplos
Matriz Triangular: Es una matriz cuadrada que tiene nulos todos los elementos que están a un mismo lado de la diagonal principal. Las matrices triangulares pueden ser de dos tipos:
Triangular Superior: Si los elementos que están por debajo de la diagonal principal son todos nulos. Es decir, aij =0 " i<j.
Triangular Inferior: Si los elementos que están por encima de la diagonal principal son todos nulos. Es decir, aij =0 "j<i.
Operaciones con matrices
Trasposición de matrices
Suma y diferencia de matrices
Producto de una matriz por un número
Propiedades simplificativas
Producto de matrices
Matrices inversibles
Trasposición de matrices
Dada una matriz de orden m x n, A = (aij), se llama matriz traspuesta de A, y se representa por At, a la matriz que se obtiene cambiando las filas por las columnas (o viceversa) en la matriz A. Es decir:
Propiedades de la trasposición de matrices
1. Dada una matriz A, siempre existe su traspuesta y además es única.
2. (At)t = A.
Suma y diferencia de matrices
La suma de dos matrices A=(aij), B=(bij) de la misma dimensión, es otra matriz S=(sij) de la misma dimensión que los sumandos y con término genérico sij=aij+bij. Por tanto, para poder sumar dos matrices estas han de tener la misma dimensión.
La suma de las matrices A y B se denota por A+B.
Ejemplo
Propiedades de la suma de matrices
1. A + (B + C) = (A + B) + C (propiedad asociativa)
2. A + B = B + A (propiedad conmutativa)
3. A + 0 = A (0 es la matriz nula)
4. La matriz –A, que se obtiene cambiando de signo todos los elementos de A, recibe el nombre de matriz opuesta de A, ya que A + (–A) = 0.
La diferencia de matrices A y B se representa por A–B, y se define como: A–B = A + (–B)
Producto de una matriz por un número
El producto de una matriz A = (aij) por un número real k es otra matriz B = (bij) de la misma dimensión que A y tal que cada elemento bij de B se obtiene multiplicando aij por k, es decir, bij = k·aij.
Ejemplo
El producto de la matriz A por el número real k se designa por k·A. Al número real k se le llama también escalar, y a este producto, producto de escalares por matrices.
Propiedades del producto de una matriz por un escalar
1. k (A + B) = k A + k B (propiedad distributiva 1ª)
2. (k + h)A = k A + h A (propiedad distributiva 2ª)
3. k [h A] = (k h) A (propiedad asociativa mixta)
4. 1·A = A (elemento unidad)
ropiedades simplificativas
1. A + C = B + C Û A = B.
2. k A = k B Û A = B si k es distinto de 0.
3. k A = h A Û h = k si A es distinto de 0.
Cálculo de la matriz inversa usando determinantes
Dada una matriz cuadrada A, se llama matriz adjunta de A, y se representa por Adj(A), a la matriz de los adjuntos, Adj(A) = (Aij).
Ejemplo
Si tenemos una matriz tal que det (A) ¹ 0, se verifica:
Esto es fácil probarlo puesto que sabemos que la suma de los productos de los elementos de una fila por sus adjuntos es el valor del determinante, y que la suma de los productos de los elementos de una fila por los adjuntos de otra fila diferente es 0 (esto sería el desarrollo de un determinante que tiene dos filas iguales por los adjuntos de una deMétodo de Gauss-Jordan para el cálculo de la matriz inversa
El método de Gauss-Jordan para calcular la matriz inversa de una dada se basa en una triangularización superior y luego otra inferior de la matriz a la cual se le quiere calcular la inversa.
Ejemplo 1
Ejemplo 2
Para aplicar el método se necesita una matriz cuadrada de rango máximo. Sabemos que no siempre una matriz tiene inversa, por lo cual comprobaremos que la matriz tenga rango máximo al aplicar el método de Gauss para realizar la triangularización superior. Si al aplicar el método de Gauss
(Rango de una matriz
Se llama menor de orden p de una matriz al determinante que resulta de eliminar ciertas filas y columnas hasta quedar una matriz cuadrada de orden p. Es decir, al determinante de cualquier submatriz cuadrada de A (submatriz obtenida suprimiendo alguna fila o columna de la matriz A).
En una matriz cualquiera Am×n puede haber varios menores de un cierto orden p dado.
Definición
El RANGO (o característica) de una matriz es el orden del mayor de los menores distintos de cero.
El rango o característica de una matriz A se representa por rg(A).
Consecuencia
Por tanto, el rango no puede ser mayor al número de filas o de columnas. inferior) se obtiene una línea de ceros, la matriz no tiene inversa.
álculo del rango usando determinantes
Si a un menor M de orden h de la matriz A se le añade la fila p y la columna q de A (que antes no estaban en el menor), obtenemos un menor N de orden h+1 que se dice obtenido de M orlando este menor con la fila p y la columna q.
Ejemplo
El método para el cálculo del rango es un proceso iterado que sigue los siguientes pasos:
Antes de comenzar el método se busca un elemento no nulo, ya que si todos los elementos son 0, el rango será 0. El elemento encontrado será el menor de orden k=1 de partida.
1. Se orla el menor de orden k hasta encontrar un menor de orden k+1 no nulo. Cuando se encuentra un menor de orden k+1 no nulo se aplica a éste el método.
2. Si todos los menores orlados obtenidos añadiéndole al menor de partida los elementos de una línea i0 son nulos, podemos eliminar dicha línea porque es combinación de las que componen el menor de orden k.
3. Si todos los menores de orden k+1 son nulos el rango es k. (Si aplicamos bien el método en realidad, al llegar a este punto, la matriz tiene orden k).
Cálculo del rango de una matriz por el método de Gauss
Transformaciones elementales
Son las transformaciones que podemos realizarle a una matriz sin que su rango varíe. Es fácil comprobar que estas transformaciones no varían el rango usando
...