ESTRUCTURA ATÓMICA
crisabel10 de Junio de 2013
4.274 Palabras (18 Páginas)428 Visitas
INGENIERÍA QUÍMICA
TRABAJO QUÍMICA GENERAL
Tema: Estructura Atómica
Átomo es la porción más pequeña de la materia.
El primero en utilizar este término fue Demócrito (filósofo griego, del año 500 a.de C.), porque creía que todos los elementos estaban formados por pequeñas partículas INDIVISIBLES. Átomo, en griego, significa INDIVISIBLE. Es la porción más pequeña de la materia. Los átomos son la unidad básica estructural de todos los materiales de ingeniería. En la actualidad no cabe pensar en el átomo como partícula indivisible, en él existen una serie de partículas subatómicas de las que protones neutrones y electrones son las más importantes. Los átomos están formados por un núcleo, de tamaño reducido y cargado positivamente, rodeado por una nube de electrones, que se encuentran en la corteza.
ELECTRÓN Es una partícula elemental con carga eléctrica negativa igual a 1,602 • 10-19 Coulomb y masa igual a 9,1093 • 10-28 g, que se encuentra formando parte de los átomos de todos los elementos.
NEUTRÓN Es una partícula elemental eléctricamente neutra y masa ligeramente superior a la del protón (mneutrón=1.675 • 10-24 g), que se encuentra formando parte de los átomos de todos los elementos.
PROTÓN Es una partícula elemental con carga eléctrica positiva igual a 1,602 • 10-19 Coulomb y cuya masa es 1837 veces mayor que la del electrón (mprotón=1.673 • 10-24 g). La misma se encuentra formando parte de los átomos de todos los elementos.
La nube de carga electrónica constituye de este modo casi todo el volumen del átomo, pero, sólo representa una pequeña parte de su masa. Los electrones, particularmente la masa externa determinan la mayoría de las propiedades mecánicas, eléctrica, químicas, etc., de los átomos, y así, un conocimiento básico de estructura atómica es importante en el estudio básico de los materiales de ingeniería.
TEORÍA ATÓMICA DE DALTON
En el período 1803-1808, Jonh Dalton, utilizó los dos leyes fundamentales de las combinaciones químicas, es decir: la "Ley de conservación de la masa"(La masa total de las sustancias presentes después de una reacción química es la misma que la masa total de las sustancias antes de la reacción) y la "Ley de composición constante"(Todas las muestras de un compuesto tienen la misma composición, es decir las mismas proporciones en masa de los elementos constituyentes.)como base de una teoría atómica.
La esencia de la teoría atómica de la materia de Dalton se resume en tres postulados:
1. Cada elemento químico se compone de partículas diminutas e indestructibles denominadas átomos. Los átomos no pueden crearse ni destruirse durante una reacción química.
2. Todos los átomos de un elemento son semejantes en masa (peso) y otras propiedades, pero los átomos de un elemento son diferentes de los del resto de los elementos.
3. En cada uno de sus compuestos, los diferentes elementos se combinan en una proporción numérica sencilla: así por ejemplo, un átomo de A con un átomo de B (AB), o un átomo de A con dos átomos de B (AB2).
La teoría atómica de Dalton condujo a la "Ley de las proporciones múltiples", que establece lo siguiente:
Si dos elementos forman más de un compuesto sencillo, las masas de un elemento que se combinan con una masa fija del segundo elemento, están en una relación de números enteros sencillos.
Modelo atómico de Thomson Los experimentos de Thomson sobre los rayos catódicos en campos magnéticos y eléctricos dieron pie al descubrimiento del electrón he hizo posible medir la relación entre su carga y su masa; el experimento de gota de aceite de Millikan proporcionó la masa del electrón; el descubrimiento de la radioactividad (la emisión espontánea de radiación por átomos) fue una prueba adicional de que el átomo tiene una subestructura. Una vez considerado el electrón como una partícula fundamental de la materia existente en todos los átomos, los físicos atómicos empezaron a especular sobre cómo estaban incorporadas estas partículas dentro de los átomos. El modelo comúnmente aceptado era el que a principios del siglo XX propuso Joseph John Thomson, quién pensó que la carga positiva necesaria para contrarrestar la carga negativa de los electrones en un átomo neutro estaba en forma de nube difusa, de manera que el átomo consistía en una esfera de carga eléctrica positiva, en la cual estaban embebidos los electrones en número suficiente para neutralizar la carga positiva.
Modelo atómico de Rutherford Para Ernest Rutherford, el átomo era un sistema planetario de electrones girando alrededor de un núcleo atómico pesado y con carga eléctrica positiva. El modelo atómico de Rutherford puede resumirse de la siguiente manera: El átomo posee un núcleo central pequeño, con carga eléctrica positiva, que contiene casi toda la masa del átomo. Los electrones giran a grandes distancias alrededor del núcleo en órbitas circulares. La suma de las cargas eléctricas negativas de los electrones debe ser igual a la carga positiva del núcleo, ya que el átomo es eléctricamente neutro. Rutherford no solo dio una idea de cómo estaba organizado un átomo, sino que también calculó cuidadosamente su tamaño (un diámetro del orden de 10-10 m) y el de su núcleo (un diámetro del orden de 10-14m). El hecho de que el núcleo tenga un diámetro unas diez mil veces menor que el átomo supone una gran cantidad de espacio vacío en la organización atómica de la materia. Para analizar cual era la estructura del átomo, Rutherford diseñó un experimento: El experimento consistía en bombardear una fina lámina de oro con partículas alfa (núcleos de helio). De ser correcto el modelo atómico de Thomson, el haz de partículas debería atravesar la lámina sin sufrir desviaciones significativas a su trayectoria. Rutherford observó que un alto porcentaje de partículas atravesaban la lámina sin sufrir una desviación apreciable, pero un cierto número de ellas era desviado significativamente, a veces bajo ángulos de difusión mayores de 90 grados. Tales desviaciones no podrían ocurrir si el modelo de Thomson fuese correcto.
Isótopos, número atómico y número másico
Los átomos están formados por un núcleo (formado por protones y neutrones), de tamaño reducido y cargado positivamente, rodeado por una nube de electrones, que se encuentran en la corteza. El número de protones que existen en el núcleo, es igual al número de electrones que lo rodean. Este número es un entero, que se denomina número atómico y se designa por la letra, "Z". La suma del número de protones y neutrones en el núcleo se denomina número másico del átomo y se designa por la letra, "A".
El número de neutrones de un elemento químico se puede calcular como A-Z, es decir, como la diferencia entre el número másico y el número atómico. No todos los átomos de un elemento dado tienen la misma masa. La mayoría de los elementos tiene dos ó más isótopos, átomos que tienen el mismo número atómico, pero diferente número másico. Por lo tanto la diferencia entre dos isótopos de un elemento es el número de neutrones en el núcleo. En un elemento natural, la abundancia relativa de sus isótopos en la naturaleza recibe el nombre de abundancia isotópica natural. La denominada masa atómica de un elemento es una media de las masas de sus isotopos naturales ponderada de acuerdo a su abundancia relativa.
A = masa atómica del elemento natural Ai = masa atómica de cada isótopo xi = porcentaje de cada isótopo en la mezcla
La nube de carga electrónica constituye casi todo el volumen del átomo, pero, sólo representa una pequeña parte de su masa. Los electrones, particularmente la masa externa determinan la mayoría de las propiedades mecánicas, eléctricas, químicas, etc., de los átomos, y así, un conocimiento básico de estructura atómica es importante en el estudio básico de los materiales de ingeniería.
Veamos una serie de ejemplos
Para el carbono Z=6. Es decir, todos los átomos de carbono tienen 6 protones y 6 electrones.
El carbono tiene dos isótopos: uno con A=12, con 6 neutrones y otro con número másico 13 (7 neutrones), que se representan como:
El carbono con número másico 12 es el más común (~99% de todo el carbono). Al otro isótopo se le denomina carbono-13.
El hidrógeno presenta tres isótopos, y en este caso particular cada uno tiene un nombre diferente
hidrógeno deuterio tritio
La forma más común es el hidrógeno, que es el único átomo que no tiene neutrones en su núcleo.
En general las propiedades químicas de un elemento están determinadas fundamentalmente por los protones y electrones de sus átomos y en condiciones normales
...