Estadistica
jesus0101013 de Mayo de 2012
3.338 Palabras (14 Páginas)518 Visitas
Estadística
La estadística es comúnmente considerada como una colección de hechos numéricos expresados en términos de una relación sumisa, y que han sido recopilados a partir de otros datos numéricos.
Kendall y Buckland (citados por Gini V. Glas / Julian C. Stanley, 1980) definen la estadística como un valor resumido, calculado, como base en una muestra de observaciones que generalmente, aunque no por necesidad, se considera como una estimación de parámetro de determinada población; es decir, una función de valores de muestra.
"La estadística es una técnica especial apta para el estudio cuantitativo de los fenómenos de masa o colectivo, cuya mediación requiere una masa de observaciones de otros fenómenos más simples llamados individuales o particulares". (Gini, 1953.
Murria R. Spiegel, (1991) dice: "La estadística estudia los métodos científicos para recoger, organizar, resumir y analizar datos, así como para sacar conclusiones válidas y tomar decisiones razonables basadas en tal análisis.
"La estadística es la ciencia que trata de la recolección, clasificación y presentación de los hechos sujetos a una apreciación numérica como base a la explicación, descripción y comparación de los fenómenos". (Yale y Kendal, 1954).
Cualquiera sea el punto de vista, lo fundamental es la importancia científica que tiene la estadística, debido al gran campo de aplicación que posee.
Objetivos
La estadística es el lenguaje universal de la ciencia, tanto en sus ramas físicas como sociales. La estadística es un instrumento formal que utilizado de manera rigurosa y con precisión, permite describir resultados y adoptar decisiones respecto a lo que estos evidencian empíricamente. La estadística en su aplicación sigue el método científico y se define como la ciencia de recolectar, clasificar, describir e interpretar datos numéricos, es el lenguaje universal de la ciencia y el estudio de los fenómenos aleatorios. Dentro de sus objetivos fundamentales se encuentra la estimación de una o más características desconocidas de una población, la realización de inferencias y pruebas de hipótesis
Se considera fundador de la estadística a Godofredo Achenwall, economista alemán(1719-1772), quien siendo profesor de la universidad de Leipzig, escribió sobre el descubrimiento de una nueva ciencia que llamó estadística (palabra derivada de Staat que significa gobierno) y que definió como “el conocimiento profundo de la situación respectiva y comparativa de cada estado”. Desde su aparición la estadística se ha enriquecido continuamente con los aportes de matemáticos, filósofos y científicos. La teoría general de la estadística es aplicable a cualquier campo científico del cual se toman observaciones. El estudio y aplicación de los métodos estadísticos son necesarios en todos los campos del saber, sean estos de nivel técnico o científico. Las primeras aplicaciones de la estadística fueron los temas de gobierno, luego las utilizaron las compañías de seguros y los empresarios de juegos de azar; posteriormente los comerciantes, los industriales, los educadores, etc. En la actualidad resulta difícil indicar profesiones que no utilicen la estadística.
Finalidad
La estadística es una ciencia o método científico que en la actualidad es considerada como un poderoso auxiliar en las investigaciones científicas, que le permite a ésta aprovechar el material cuantitativo.
La estadística tiene como finalidad el desarrollo de técnicas para el conocimiento numérico de un conjunto.
La estadística se divide en 2 ramas principales:
-Estadística descriptiva: Cuya finalidad es examinar a todos los individuos de un conjunto.
-Estadística inferencias: Por la que, mediante el estudio de una muestra se sacan conclusiones válidas para la totalidad.
Tipos de Estadística
Descriptiva o Deductiva: esta clase de estadística se utiliza con el propósito de recolectar, describir y resumir un conjunto de datos obtenidos. Estos pueden visualizarse de manera numérica y gráfica. Sin embargo, su uso se acota sólo al uso de la información obtenida. Es decir, que a partir de la misma no se puede realizar ningún tipo de generalización.
Inferencial o Inductiva: de manera contraria a la anterior, esta clase de estadística tiene la particularidad de que a partir de los datos muestrales que maneja, es posible realizar conclusiones y predicciones que incluyan a toda la población. Es decir, que los resultados obtenidos a partir del análisis y conclusión podrán ser extrapolados, y de esta forma realizar un pronóstico inclusivo. Las inferencias pueden presentarse a través de respuestas a preguntas del tipo si/no, relaciones entre una serie de variables, estimaciones numéricas, entre otras.
Aplicada : Está conformada por las dos clases de estadísticas anteriores. Su objetivo consiste en deducir resultados sobre un universo, a partir de una muestra determinada. Este tipo de estadística puede ser aplicada en cualquier área que no pertenezca a ella, tal como historia, psicología, etc.
Estadística Matemática: se refiere al empleo de la estadística pero desde un punto de vista formal, a través del uso de distintas ramas propias de la matemática y de la teoría de la probabilidad. Su uso es necesario debido a que los datos que maneja la estadística matemática son aleatorios e inciertos.
Población
El concepto de población en estadística va más allá de lo que comúnmente se conoce como tal. Una población se precisa como un conjunto finito o infinito de personas u objetos que presentan características comunes.
"Una población es un conjunto de todos los elementos que estamos estudiando, acerca de los cuales intentamos sacar conclusiones". Levin & Rubin (1996).
"Una población es un conjunto de elementos que presentan una característica común". Cadenas (1974).
Ejemplo:
Los miembros del Colegio de Ingenieros del Estado Cojedes.
El tamaño que tiene una población es un factor de suma importancia en el proceso de investigación estadística, y este tamaño vienen dado por el número de elementos que constituyen la población, según el número de elementos la población puede ser finita o infinita. Cuando el número de elementos que integra la población es muy grande, se puede considerar a esta como una población infinita, por ejemplo; el conjunto de todos los números positivos. Una población finita es aquella que está formada por un limitado número de elementos, por ejemplo; el número de estudiante del Núcleo San Carlos de la Universidad Nacional Experimental Simón Rodríguez.
Cuando la población es muy grande, es obvio que la observación de todos los elementos se dificulte en cuanto al trabajo, tiempo y costos necesario para hacerlo. Para solucionar este inconveniente se utiliza una muestra estadística.
Es a menudo imposible o poco práctico observar la totalidad de los individuos, sobre todos si estos son muchos. En lugar de examinar el grupo entero llamado población o universo, se examina una pequeña parte del grupo llamada muestra.
Muestra:
Muestra estadística (también llamada muestra aleatoria o simplemente muestra) es un subconjunto de casos o individuos de una población estadística.
Las muestras se obtienen con la intención de inferir propiedades de la totalidad de la población, para lo cual deben ser representativas de la misma. Para cumplir esta característica la inclusión de sujetos en la muestra debe seguir una técnica de muestreo. En tales casos, puede obtenerse una información similar a la de un estudio exhaustivo con mayor rapidez y menor coste (véanse las ventajas de la elección de una muestra, más abajo).
Por otra parte, en ocasiones, el muestreo puede ser más exacto que el estudio de toda la población porque el manejo de un menor número de datos provoca también menos errores en su manipulación. En cualquier caso, el conjunto de individuos de la muestra son los sujetos realmente estudiados.
El número de sujetos que componen la muestra suele ser inferior que el de la población, pero suficiente para que la estimación de los parámetros determinados tenga un nivel de confianza adecuado. Para que el tamaño de la muestra sea idóneo es preciso recurrir a su cálculo.
Ventaja
El estudio de muestras es preferible, en la mayoría de los casos, por las siguientes razones:
1. Si la población es muy grande (en ocasiones, infinita, como ocurre en determinados experimentos aleatorios) y, por tanto, imposible de analizar en su totalidad.
2. Las características de la población varían si el estudio se prolonga demasiado tiempo.
3. Reducción de costos: al estudiar una pequeña parte de la población, los gastos de recogida y tratamiento de los datos serán menores que si los obtenemos del total de la población.
4. Rapidez: al reducir el tiempo de recogida y tratamiento de los datos, se consigue mayor rapidez.
5. Viabilidad: la elección de una muestra permite la realización de estudios que serían imposible hacerlo sobre el total de la población.
6. La población es suficientemente homogénea respecto a la característica medida, con lo cual resultaría inútil malgastar recursos en un análisis exhaustivo (por ejemplo, muestras sanguíneas).
7. El proceso de estudio es destructivo o es necesario consumir un artículo para extraer la muestra (ejemplos: vida media de una bombilla, carga soportada por una cuerda, precisión de un proyectil, etc.).
Tipos de muestras
Muestreo de conveniencia
...