ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

LAS FUERZAS DE LA NATURALEZA

kidomaru3000026 de Mayo de 2012

4.061 Palabras (17 Páginas)919 Visitas

Página 1 de 17

LAS FUERZAS DE LA NATURALEZA

TODOS los cuerpos materiales interactúan entre sí en el sentido de que unos ejercen fuerzas sobre los otros. La fuerza de interacción más familiar es la gravitación, el hecho de que los cuerpos caigan al suelo es ya parte íntegra de nuestra experiencia común. Pero la gravitación es sólo una de las cuatro fuerzas fundamentales de la naturaleza. Esas cuatro fuerzas son el tema del presente capítulo.

GRAVITACIÓN

Todo cuerpo masivo atrae gravitacionalmente a otro. La Tierra nos atrae y nosotros atraemos a la Tierra (aunque la fuerza que ejerce nuestro cuerpo es prácticamente imperceptible y, en la práctica, sólo se nota la fuerza de atracción de la Tierra).

En el siglo XVII el gran físico inglés Isaac Newton descubrió que la gravitación es un fenómeno universal. Según una famosa leyenda, Newton estaba un día sentado debajo de un manzano, cavilando con respecto a la fuerza que mantiene unida la Luna a la Tierra, cuando vio caer una manzana. Este suceso le dio la clave para descubrir que la fuerza de gravedad, la misma que hace caer la manzana, es también la que retiene a la Luna en órbita. Descubrió así el principio de la gravitación universal.

Por extraño que nos parezca en la actualidad, hasta antes de Newton se pensaba que la gravitación era un fenómeno exclusivo de la Tierra, como si nuestro planeta fuese un sitio muy especial en el cosmos. Así, el filósofo griego Aristóteles —quien vivió en el siglo IV a.c. y llegó a ser considerado la máxima autoridad científica en la Edad Media— distinguía claramente entre los fenómenos terrestres y los celestes. Para Aristóteles la gravitación era un fenómeno puramente terrestre, que no podía influir en los cuerpos celestes, pues éstos estaban hechos de una sustancia muy distinta a la materia común que se encuentra en la Tierra. Incluso el mismo Galileo, uno de los fundadores de la ciencia física, estudió detenidamente la caída de los cuerpos pero nunca sospechó que hubiera una relación entre este fenómeno y el movimiento de los planetas.

La gravitación universal, descubierta por Newton, implica que la Tierra no sólo atrae a los objetos que están en su superficie, sino también a la Luna y a cualquier cuerpo en su cercanía. Además, el Sol atrae a la Tierra y a todos los demás planetas, las estrellas se atraen entre sí, las galaxias también, y así toda la materia en el Universo.

Pero además Newton descubrió que la fuerza de gravedad obedece una ley muy sencilla. La fuerza gravitacional entre dos cuerpos es directamente proporcional a las masas de los cuerpos e inversamente proporcional al cuadrado de la distancia que los separa. En términos matemáticos, la fórmula para la fuerza se escribe:

donde F es la fuerza, M1 y M2 son las masas de cada uno de los cuerpos, R es la distancia que los separa y G es una constante de proporcionalidad, la llamada constante gravitacional o de Newton, cuyo valor determina la intensidad de la interacción gravitacional. Se ha determinado experimentalmente que G vale 6.672 X 10-11 m 3/kgs2. Esto equivale a decir que dos masas de un kilogramo cada una colocadas a una distancia de un metro se atraen con una fuerza de 6.672 X 10-11 newtons.11

Los planetas se mantienen unidos al Sol en órbitas estables por el equilibrio de dos fuerzas: la atracción gravitacional de ese astro y la fuerza centrífuga debida al movimiento circular. La fuerza centrífuga no se debe a una interacción de la materia, sino a la tendencia que tienen los cuerpos a mantener su movimiento en línea recta (esta fuerza se manifiesta, por ejemplo, en un automóvil cuando toma una curva: los pasajeros sienten una fuerza que los empuja hacia la parte exterior de la curva ). El gran éxito de Newton fue encontrar la manera de calcular con extrema precisión la trayectoria de los planetas, o de cualquier cuerpo en general, a partir de ecuaciones matemáticas que describen la fuerza aplicada en ellas.

En resumen, la gravitación es el cemento del Universo. Así como los planetas se mantienen pegados al Sol, las estrellas se atraen entre sí y forman enormes conglomerados que son las galaxias. Las estrellas en una galaxia giran alrededor del centro de ésta y, a la vez, son atraídas gravitacionalmente al centro de la galaxia. De esta manera se mantienen unidas.

Todo se explicaba a la perfección en el esquema teórico desarrollado por Newton. El único pedazo que faltaba en el rompecabezas era la naturaleza de la fuerza de gravitación. En efecto ¿qué es lo que produce realmente la atracción gravitacional? Si jalamos una piedra con una cuerda, la atracción se da por medio de la cuerda; si soplamos para empujar una pluma, la fuerza de interacción se da mediante el aire. Toda transmisión implica un medio: el sonido se transmite por medio del aire, la energía eléctrica por medio de cables, el calor por cuerpos conductores, etc. ¿Qué medio transmite la gravitación? ¿Cómo "sabe" la Luna que la Tierra está ahí y la atrae? ¿Cuál es el origen de esa "acción a distancia"?

Newton nunca estuvo enteramente satisfecho de su obra, pues no tenía una respuesta a las anteriores preguntas. Como una solución provisional propuso que el espacio esta totalmente lleno de una sustancia invisible e impalpable, el éter, que permea todos los cuerpos materiales y sirve para transmitir, de algún modo aún desconocido, la atracción gravitacional. La misteriosa "acción a distancia" cuya naturaleza todavía desconocía, se ejercería mediante el éter. Empero, el problema habría de perdurar mucho tiempo en la física.

La física de Newton permaneció incólume durante más de dos siglos. Pero a principios del siglo XX comenzaron a aparecer nuevos aspectos del mundo que ya no correspondían con el modelo clásico. Para dar un nuevo paso y comprender la gravitación se necesitaba una nueva teoría física que relevara la mecánica de Newton en los nuevos dominios del Universo que surgían. Afortunadamente, cerca de 1915 Albert Einstein había elaborado su teoría de la gravitación, también conocida como teoría de la relatividad general. 12

De acuerdo con Einstein el espacio y el tiempo no son conceptos independientes, sino que están estrechamente vinculados y forman un espacio-tiempo de cuatro dimensiones, en el que el tiempo es la cuarta dimensión.

Expliquemos este concepto: nuestro espacio es de tres dimensiones, lo cual quiere decir sencillamente que todos los objetos materiales tienen altura, anchura y profundidad. Éste es un hecho muy evidente, pero no olvidemos que también existen espacios de una o dos dimensiones. La superficie de una hoja de papel, por ejemplo, es un espacio de dos dimensiones; un dibujo sólo tiene altura y anchura. Del mismo modo, una línea es un espacio de una sola dimensión.

En el siglo pasado, algunos matemáticos como G. F. B. Riemmann se dieron cuenta de que es posible concebir espacios de más de tres dimensiones con leyes geométricas perfectamente congruentes. Esto parecía una simple especulación de matemáticos hasta que, a principios de este siglo, surgió la teoría de la relatividad que revolucionó por completo toda nuestra visión del Universo.

Para explicar la gravitación Einstein postuló que la fuerza gravitacional se debe a una curvatura del espacio-tiempo. Así como una piedra pesada deforma una lona de tela y cualquier canica que se mueva sobre esa lona sigue una trayectoria curva, el Sol deforma el espacio-tiempo de cuatro dimensiones a su alrededor y los planetas se mueven siguiendo esa curvatura. En particular, una de las consecuencias más interesantes de la teoría de la relatividad es que el tiempo transcurre más lentamente donde la fuerza gravitacional es mayor.

Con la relatividad general, el problema de la acción a distancia fue resuelto a favor de un nuevo concepto: la geometría del espacio-tiempo. La física se redujo a geometría.

ELECTROMAGNETISMO

Otras fuerzas, bastante comunes en nuestra experiencia diaria —aunque no tanto como la gravedad—, son las fuerzas eléctricas y magnéticas. Los griegos se habían dado cuenta que al frotar un pedazo de ámbar (electros en griego) con una tela, el ámbar adquiría la propiedad de atraer pequeños pedazos de papel (el experimento se puede repetir con plástico en lugar de ámbar). Varios siglos después Charles-Augustin Coulomb estudio de modo más sistemático el fenómeno de la electricidad y descubrió que dos cargas eléctricas se atraen o se repelen con una fuerza inversamente proporcional al cuadrado de la distancia que los separa, tal como la fuerza gravitacional. Pero, a diferencia de la gravitación que siempre es atractiva, la fuerza eléctrica puede ser tanto repulsiva como atractiva, según si las cargas son del mismo signo o de signo contrario.

También se conocían desde la antigüedad los imanes, pedazos de hierro con la curiosa propiedad de atraer los objetos de hierro, y también de atraerse o repelerse entre sí al igual que las cargas eléctricas. Un imán posee dos polos, norte y sur; pero si se parte un imán por la mitad no se aíslan los polos, sino que se obtienen dos nuevos imanes con un par de polos cada uno: ésta es la diferencia esencial con la fuerza eléctrica, ya que no se puede tener un polo aislado, que equivaldría a una "carga magnética".

La electricidad y el magnetismo empezaron a cobrar importancia en el siglo XIX,. cuando Europa vivía en plena revolución industrial gracias a la invención de la máquina de vapor. En las ciencias físicas, Laplace y otros notables científicos habían logrado plasmar la mecánica de Newton en un lenguaje matemático que permitía su aplicación

...

Descargar como (para miembros actualizados) txt (25 Kb)
Leer 16 páginas más »
Disponible sólo en Clubensayos.com