Mate 4
rosario tafurTrabajo30 de Septiembre de 2015
4.764 Palabras (20 Páginas)137 Visitas
[pic 1][pic 2]
FACULTAD: Ingeniería Electrónica e Informática
CICLO: vacacional
CURSO: Análisis Matemático 4
PROFESOR: Paul Díaz
TRABAJO: Problemas de ecuaciones diferenciales
ALUMNOS: Bazán Rodríguez Vidal
Valderrama Valderrama Richard
Incio Neyra Miguel
Bellido Tafur Miguel
Patricio Vázquez Augusto
Luna Araujo Ricardo
Cavero Peralta Diego
Morales Ramírez John
2014
Ecuaciones diferenciales ordinarias de variables separables
25) [pic 3]
Separando las variables
[pic 4]
Hacemos fracciones parciales en cada término
[pic 5]
[pic 6]
[pic 7]
[pic 8]
[pic 9]
Integramos
[pic 10]
[pic 11]
[pic 12]
[pic 13]
=>[pic 14]
26) [pic 15]
Separando variables
[pic 16]
Integramos
[pic 17]
[pic 18]
[pic 19]
[pic 20]
=>[pic 21]
31)[pic 22]
Separando variables
[pic 23]
Integrando
[pic 24]
[pic 25]
[pic 26]
[pic 27]
[pic 28]
[pic 29]
[pic 30]
=>[pic 31]
Prob 25 ---------------- ESPINOZA (PAG 32)
Prob 26----------------- ESPINOZA (PAG 32)
Prob 31----------------- ESPINOZA (PAG 32)
Ecuaciones diferenciales ordinarias reducibles
6) [pic 32]
[pic 33]
[pic 34]
[pic 35]
[pic 36]
[pic 37]
[pic 38]
[pic 39]
[pic 40]
[pic 41]
15) [pic 42]
[pic 43]
[pic 44]
[pic 45]
[pic 46]
[pic 47]
[pic 48]
separamos las variables e integramos
[pic 49]
[pic 50]
[pic 51]
[pic 52]
[pic 53]
[pic 54]
21) [pic 55]
[pic 56]
[pic 57]
Sustituyendo
[pic 58]
[pic 59]
[pic 60]
[pic 61]
[pic 62]
[pic 63]
[pic 64]
[pic 65]
[pic 66]
Prob 06 ---------------- ESPINOZA (PAG 39)
Prob 15----------------- ESPINOZA (PAG 40)
Prob 21----------------- ESPINOZA (PAG 41)
Ecuaciones Diferenciales Homogéneas
- [pic 67]
[pic 68]
[pic 69]
[pic 70]
[pic 71]
[pic 72]
[pic 73]
[pic 74]
[pic 75]
[pic 76]
[pic 77]
[pic 78]
[pic 79]
[pic 80]
[pic 81]
[pic 82]
Dennis G. Zill , Cap 2.5 , Ej 2.5 , Prob 1
- [pic 83]
[pic 84]
[pic 85]
[pic 86]
[pic 87]
[pic 88]
[pic 89]
[pic 90]
[pic 91]
[pic 92]
[pic 93]
[pic 94]
[pic 95]
[pic 96]
[pic 97]
[pic 98]
[pic 99]
[pic 100]
[pic 101]
[pic 102]
[pic 103]
[pic 104]
[pic 105]
[pic 106]
[pic 107]
[pic 108]
[pic 109]
[pic 110]
Denni G.Zill Cap 2.5 Ejerc 2.5 Prob 2
- [pic 111]
[pic 112]
[pic 113]
[pic 114]
[pic 115]
[pic 116]
[pic 117]
[pic 118]
[pic 119]
[pic 120]
[pic 121]
[pic 122]
[pic 123]
[pic 124]
[pic 125]
[pic 126]
[pic 127]
[pic 128]
[pic 129]
[pic 130]
[pic 131]
[pic 132]
[pic 133]
Denning G. Zill cap 2.5 Ejerc. 2.5 Probl 4
Ecuaciones Reductibles a Homogénea
1) [pic 134]
Sean [pic 135]
[pic 136]
L1 y L2 son diferentes
[pic 137]
[pic 138]
[pic 139]
[pic 140]
[pic 141]
[pic 142]
[pic 143]
[pic 144]
[pic 145]
[pic 146]
[pic 147]
[pic 148]
Eduardo Espinoza pag 66 Prob 11
2)[pic 149]
[pic 150]
[pic 151]
[pic 152]
[pic 153]
[pic 154]
[pic 155]
[pic 156]
[pic 157]
[pic 158]
[pic 159]
[pic 160]
[pic 161]
[pic 162]
[pic 163]
[pic 164]
[pic 165]
Eduardo Espinoza pag 68 Bloque 2 Ejercicio 1
- [pic 166]
[pic 167]
[pic 168]
[pic 169]
[pic 170]
[pic 171]
[pic 172]
[pic 173]
[pic 174]
[pic 175]
[pic 176]
[pic 177]
[pic 178]
[pic 179]
[pic 180]
[pic 181]
[pic 182]
[pic 183]
[pic 184]
Eduardo Espinoza Pag 68 Bloque 2 ejercicio 2
Problemas Propuestos
- Ecuaciones Diferenciales Ordinarias Exactas:
- (2xy – tgy)dx + (x2- xsec2y)dy = 0
➔
donde = es exacta[pic 185][pic 186][pic 187][pic 188]
Existe una función para = M(x;y)[pic 189]
Luego : = integrando respecto a x[pic 190][pic 191]
= )dx + g(y), [pic 192][pic 193]
= x2y – xtgy + g(y), luego derivamos respecto a “y”[pic 194]
= x2 – xsec2y + g’(y), como = [pic 195][pic 196][pic 197]
Entonces:
= x2 – xsec2y + g’(y) , de donde[pic 198]
x2 – xsec2y + g’(y) = [pic 199]
...