ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Modelos Atomicos


Enviado por   •  3 de Abril de 2014  •  2.523 Palabras (11 Páginas)  •  367 Visitas

Página 1 de 11

Arnold Sommerfeld

(Arnold Johannes Wilhelm Sommerfeld; Königsberg, 1868 - Munich, 1951) Físico y matemático alemán que introdujo en el modelo atómico de Bohr las órbitas elípticas de los electrones para explicar la estructura fina del espectro, de lo que resultó un modelo perfeccionado conocido como modelo atómico de Sommerfeld. Formado en la Universidad de Königsberg, en la que fue discípulo de Lindermann y Hilbert, ejerció la docencia primero en la Escuela Técnica de Aquisgrán y en la Universidad de Berlín, y, posteriormente, en la Universidad de Munich, donde transcurrió la mayor parte de su carrera científica y docente. Aunque el modelo atómico de Niels Bohr podía justificar las cinco series espectrales del átomo de hidrógeno, presentaba el importante inconveniente de no explicar los espectros de los demás elementos. Incluso en el caso del hidrógeno, al perfeccionarse los métodos espectroscópicos se descubrió, junto a cada línea de las series del hidrógeno, un conjunto de líneas muy próximas entre sí (estructura fina del espectro) que no tenían explicación. Arnold Sommerfeld modificó el modelo atómico de Bohr admitiendo que las órbitas de los electrones, tal como había dicho Bohr, podían ser circulares, pero añadiendo que también podían ser elípticas; en tal caso, el núcleo se hallaría ubicado en uno de los focos de la elipse.

Estas órbitas cuantizadas, y posibles para cada nivel energético, se llaman subniveles y se caracterizan mediante un número cuántico secundario, l. Para un nivel energético n, los valores que puede tomar l son 0, 1, 2, 3, ... n-1. Para Bohr sólo era posible una órbita del electrón, y aquí vemos que sólo se cumple para n = 1. En los demás casos existirán tantas órbitas posibles como indique el número cuántico n.En el caso del átomo de hidrógeno, por ejemplo, si n= 1 sólo es posible una órbita circular, cuyo radio coincide con el calculado por Bohr. Para n = 2 existen dos valores posibles para el número cuántico secundario, l = 0 y l = 1. Por consiguiente, existen dos órbitas posibles, una circular y otra elíptica.

Con esta modificación se explica que la energía liberada en un salto no es única y, por consiguiente, la frecuencia de la radiación correspondiente tampoco lo será. Quedaba justificada, de este modo, la estructura fina del espectro. A estos subniveles se les asignaron símbolos alfabéticos basados en la apariencia que presentan en el espectro: s "sharp"(nítido), p "principal", d "difuse" y f "fundamental".

ME PARECIO INTERESANTE:

tiene el honor de ser la persona que más veces fue nominada al Premio Nobel de física hasta el año 1950 junto a Otto Stern, con un total de 81 nominaciones cada uno (nótese que se puede nominar varias veces a una misma persona un mismo año por diferentes trabajos). Eso sí, entre Stern y Sommerfeld existe una gran diferencia, Stern se llevó el Nóbel en 1943, mientras que Arnold Sommerfeld se quedó con el honor de ostentar el mayor número de nominaciones para un Premio Nobel de física.

Erwin Schrödinger

(Viena, 1887-id., 1961) Físico austriaco. Compartió el Premio Nobel de Física del año 1933 con Paul Dirac por su contribución al desarrollo de la mecánica cuántica. Ingresó en 1906 en la Universidad de Viena, en cuyo claustro permaneció, con breves interrupciones, hasta 1920. Sirvió a su patria durante la Primera Guerra Mundial, y luego, en 1921, se trasladó a Zurich, donde residió los seis años siguientes.

En 1926 publicó una serie de artículos que sentaron las bases de la moderna mecánica cuántica ondulatoria, y en los cuales transcribió en derivadas parciales su célebre ecuación diferencial, que relaciona la energía asociada a una partícula microscópica con la función de onda descrita por dicha partícula. Dedujo este resultado tras adoptar la hipótesis de De Broglie, enunciada en 1924, según la cual la materia y las partículas microscópicas, éstas en especial, son de naturaleza dual y se comportan a la vez como onda y como cuerpo.

Atendiendo a estas circunstancias, la ecuación de Schrödinger arroja como resultado funciones de onda, relacionadas con la probabilidad de que se dé un determinado suceso físico, tal como puede ser una posición específica de un electrón en su órbita alrededor del núcleo.

En 1927 aceptó la invitación de la Universidad de Berlín para ocupar la cátedra de Max Planck, y allí entró en contacto con algunos de los científicos más distinguidos del momento, entre los que se encontraba Albert Einstein

ME PARECIO INTERESANTE:

Permaneció en dicha universidad hasta 1933, momento en que decidió abandonar Alemania ante el auge del nazismo y de la política de persecución sistemática de los judíos. Durante los siete años siguientes residió en diversos países europeos hasta recalar en 1940 en el Dublin Institute for Advanced Studies de Irlanda, donde permaneció hasta 1956, año en el que regresó a Austria como profesor emérito de la Universidad de Viena.

Paul Dirac

(Bristol, Reino Unido, 1902-Tallahassee, EE UU, 1984) Físico británico. Hijo de un profesor de francés de origen suizo, estudió en la escuela en que impartía clases su padre, donde pronto mostró particular facilidad para las matemáticas. Cursó estudios de ingeniería eléctrica en la Universidad de Bristol, interesándose especialmente por el asiduo empleo de aproximaciones matemáticas de que hace uso la ingeniería para la resolución de todo tipo de problemas.

Tras su graduación tuvo dificultades para encontrar trabajo, circunstancia ésta que le llevó a ejercer la docencia casi de forma casual en el St. John's College de Cambridge. Su superior en la mencionada escuela, R. H. Fowler, fue colaborador de Niels Bohr en su labor pionera dentro del campo de la física atómica, una afortunada coincidencia merced a la cual Dirac no tardó en ponerse al corriente de los avances experimentados en esta área de la física.

Pronto, en 1926, realizó su mayor contribución a esta ciencia al enunciar las leyes que rigen el movimiento de las partículas atómicas, de forma independiente y tan sólo unos meses más tarde de que lo hicieran otros científicos de renombre como Max Born o Pascual Jordan, aunque se distinguió de éstos por su mayor generalidad y simplicidad lógica en el razonamiento.

Suya fue también la revolucionaria idea según la cual el comportamiento del electrón puede ser descrito mediante cuatro funciones de onda que simultáneamente satisfacen cuatro ecuaciones diferenciales. Se deduce de estas ecuaciones que el electrón debe rotar alrededor de su eje (espín electrónico), y también que se puede encontrar en estados energéticos de signo negativo, lo cual no parece corresponder con la realidad física. A este respecto, Dirac sugirió que la deficiencia energética de un electrón en ese estado sería equivalente a una partícula de vida corta y cargada positivamente; esta sugerencia fue corroborada posteriormente por C. D. Anderson merced al descubrimiento de las partículas denominadas positrones.

ME PARECIO INTERESANTE:

Sus geniales contribuciones, como la teoría cuántica de la radiación o la mecánica estadística de Fermi-Dirac, le valieron el Premio Nobel de Física del año 1933, compartido con Erwin Schrödinger, tras haber obtenido el año anterior la cátedra Lucasiana de matemáticas en Cambridge, que mantuvo hasta 1968. Acabó por trasladarse a Estados Unidos, donde fue nombrado en 1971 profesor emérito de la Universidad de Tallahassee.

Max Planck

(Ernst Karl Ludwig Planck; Kiel, actual Alemania, 1858-Gotinga, Alemania, 1947) Físico alemán. Dotado de una extraordinaria capacidad para disciplinas tan dispares como las artes, las ciencias y las letras, se decantó finalmente por las ciencias puras, y siguió estudios de física en las universidades de Munich y Berlín; en ésta tuvo como profesores a Helmholtz y Kirchhoff.

Tras doctorarse por la Universidad de Munich con una tesis acerca del segundo principio de la termodinámica (1879), fue sucesivamente profesor en las universidades de Munich, Kiel (1885) y Berlín (1889), en la última de las cuales sucedió a su antiguo profesor, Kirchhoff. Enunció la ley de Wien (1896) y aplicó el segundo principio de la termodinámica, formulando a su vez la ley de la radiación que lleva su nombre (ley de Planck, 1900).

A lo largo del año 1900 logró deducir dicha ley de los principios fundamentales de la termodinámica, para lo cual partió de dos suposiciones: por un lado, la teoría de L. Boltzmann, según la cual el segundo principio de la termodinámica tiene carácter estadístico, y por otro, que el cuerpo negro absorbe la energía electromagnética en cantidades indivisibles elementales, a las que dio el nombre de quanta (cuantos).

El valor de dichos cuantos debía ser igual a la frecuencia de las ondas multiplicada por una constante universal, la llamada constante de Planck. Este descubrimiento le permitió, además, deducir los valores de constantes como la de Boltzmann y el número de Avogadro.

Ocupado en el estudio de la radiación del cuerpo negro, trató de describir todas sus características termodinámicas, e hizo intervenir, además de la energía, la entropía. Conforme a la opinión de L. Boltzmann de que no lograría obtener una solución satisfactoria para el equilibrio entre la materia y la radiación si no suponía una discontinuidad en los procesos de absorción y emisión, logró proponer la «fórmula de Planck», que representa con exactitud la distribución espectral de la energía para la radiación del llamado cuerpo negro. Para llegar a este resultado tuvo que admitir que los electrones no podían describir movimientos arbitrarios, sino tan sólo determinados movimientos privilegiados y, en consecuencia, que sus energías radiantes se emitían y se absorbían en cantidades finitas iguales, es decir, que estaban cuantificadas.

La hipótesis cuántica de Planck supuso una revolución en la física del siglo XX, e influyó tanto en Albert Einstein (efecto fotoeléctrico) como en Niels Bohr (modelo de átomo de Bohr). El primero concluyó, en 1905, que la única explicación válida para el llamado efecto fotoeléctrico consiste en suponer que en una radiación de frecuencia determinada la energía se concentra en corpúsculos (cuantos de luz, conocidos en la actualidad como fotones) cuyo valor es igual al producto de la constante de Planck por dicha frecuencia. A pesar de ello, tanto Planck como el propio Einstein fueron reacios a aceptar la interpretación probabilística de la mecánica cuántica (escuela de Copenhague). Sus trabajos fueron reconocidos en 1918 con la concesión del Premio Nobel de Física por la formulación de la hipótesis de los cuantos y de la ley de la radiación.

ME PARECIO INTERESANTE:

Fue secretario de la Academia Prusiana de Ciencias (1912-1938) y presidente de la Kaiser Wilhelm Gesellschaft de Ciencias de Berlín (1930-1937) que, acabada la Segunda Guerra Mundial, adoptó el nombre de Sociedad Max Planck. Su vida privada estuvo presidida por la desgracia: contrajo nupcias en dos ocasiones, sus cuatro hijos murieron en circunstancias trágicas y su casa quedó arrasada en 1944 durante un bombardeo; recogido por las tropas estadounidenses, fue trasladado a Gotinga, donde residió hasta su muerte.

William Crookes

(Londres, 1832 - 1919) Físico y químico inglés. Descubrió el elemento químico talio y fue un incansable e imaginativo inventor. Su tubo de descarga de rayos catódicos formó parte de todos los laboratorios experimentales y permitió descubrir el electrón y el efecto fotoeléctrico.

William Crookes fue el mayor de los diecisiete hijos de un sastre londinense. Estudió en su juventud en el Royal College of Chemistry. Su primer trabajo fue como ayudante de Hofmann. En 1854 entró como ayudante en el observatorio de Oxford, y un año más tarde ganó la cátedra de química de la Universidad de Chester. Tras ejercer de maestro, una sustanciosa herencia recibida le permitió abrir su propio laboratorio de investigación en Londres y editar la influyente Chemical News entre 1859 y 1906.

En 1861, examinando el espectro de emisión de un pedazo de selenio en bruto, observó una línea brillante, nueva, que le llevó a aislar un nuevo elemento químico, el talio, y a examinar sus propiedades químicas. Con este fin construyó el radiómetro que lleva su nombre, una modificación de radiómetro de Hittorf, que consta de unas aspas con cuatro aletas muy ligeras, con sus lados de color negro, insertas en una ampolla de cristal con un gas a baja presión en su interior. En presencia de energía radiante, las aspas se mueven. Este aparato confirmó la teoría cinética de los gases. Llegó a afirmar en 1879 la existencia de un nuevo estado de la materia, que llamó materia radiante, lo que le valió un premio de la Academia de Ciencias de Francia dotado de medalla conmemorativa y la suma de 3.000 francos. Este premio le permitió convertirse en Académico del Instituto de Ciencias de Francia.

Crookes también estudió las descargas eléctricas en un tubo de vacío, y descubrió que los rayos catódicos viajaban en línea recta, proyectaban sombras, calentaban objetos sitos en su camino y se desviaban con campos magnéticos. De todo ello concluyó que eran partículas de carga eléctrica negativa. Veinte años más tarde, J. J. Thomson logró identificarlas como electrones.

Las inquietudes científicas de Crookes le llevaron a inventar multitud de objetos, desde tintes químicos para la industria textil hasta antisépticos. Inventó elespintariscopio, con el que se detectaba la emisión de partículas alfa de los elementos radiactivos. Investigó la obtención de diamantes industriales, estudió acerca de la obtención de azúcar de remolacha y construyó saneamientos.

Robert Andrews Millikan

(Morrison, 1868 - San Marino, 1953) Físico estadounidense de origen escocés. Tras doctorarse en la Columbia University de Nueva York (1895), realizó estudios postdoctorales en las universidades de Berlín y Gotinga (1895-1896).

En 1896 se integró al Departamento de Física de la Universidad de Chicago, donde fue nombrado profesor en 1910. Desde 1921, hasta su jubilación en 1945 como profesor emérito, ocupó la dirección del Norman Bridge Laboratory de Física en el California Institute of Technology de Pasadena, de cuyo consejo ejecutivo fue asimismo presidente. Bajo su dirección, la institución se convirtió en uno de los centros de investigación más prestigiosos a escala mundial.

En 1907 inició una serie de trabajos destinados a medir la carga del electrón, estudiando el efecto de los campos eléctrico y gravitatorio sobre una gota de agua (1909) y de aceite (1912), y deduciendo de sus observaciones el primer valor preciso de la constante "e". Obtuvo además la primera determinación fotoeléctrica del cuanto de luz, verificando la ecuación fotoeléctrica de Einstein (1916), y evaluó la constante "h" de Planck.

Recibió por todo ello numerosos reconocimientos, entre los que destaca el premio Nobel de Física en 1923. Realizó además estudios sobre la absorción de los rayos X, el movimiento browniano de los gases, el espectro ultravioleta y, en los últimos años de su vida, investigó la naturaleza de los rayos cósmicos, precisando la variación estacional de su intensidad con la altitud.

Fue autor de varios libros de texto de considerable calidad: La mecánica, la física molecular y el calor(Mechanics, Molecular Physics, and Heat, 1903), Curso de introducción a la física (First Course in Physics, 1906) en colaboración con Henry Gale, y Electricidad, sonido y luz (Electricity, Sound and Light, 1908)

Otras de sus obras son El electrón (The Electron, 1917), La ciencia y la vida (Science and Life, 1923), La ciencia y la nueva civilización (Science and the New Civilization, 1930), El tiempo, la materia y los valores(Time, Matter, and Values, 1932), Electrones (+ y -), protones, fotones, neutrones y rayos cósmicos(Electrons (+ y -), Protons, Photons, Neutrons, and Cosmic Rays, 1935), Nueva física elemental (New Elementary Physics, 1936), La mecánica, la física molecular, el calor y el sonido (Mechanics, Molecular Physics, Heat and Sound, 1937) y Los rayos cósmicos(Cosmic Rays, 1939). En 1950 se publicó su autobiografía.

...

Descargar como  txt (16.2 Kb)  
Leer 10 páginas más »
txt