Relación De La Fisicoquimica Con El Sistema Renal, Respiratorio Y Función De Proteinas
idali18951126 de Noviembre de 2014
4.577 Palabras (19 Páginas)385 Visitas
Sistema respiratorio
Unos de los campos en el cual la medicina ha logrado mayor y rápido avance en los últimos años es en la fisiología respiratoria. El Sistema Respiratorio es el responsable de aportar oxígeno a la sangre y expulsar los gases de desecho, de los que el dióxido de carbono es el principal constituyente, del cuerpo. Las estructuras superiores del sistema respiratorio están combinadas con los órganos sensoriales del olfato y el gusto (en la cavidad nasal y en la boca) y el sistema digestivo (desde la cavidad oral hasta la faringe).
El intercambio total de los gases entre la atmósfera, la sangre y las células se llama Respiración. En la Respiración intervienen tres procesos básicos. El primer proceso, la ventilación pulmonar (pulmo = pulmón) o respiración, comprende a la inspiración (flujo de aire hacia dentro de los pulmones) y la espiración (flujo de aire hacia fuera de los pulmones) o intercambio del aire entre la atmósfera y los pulmones. El segundo y tercer proceso comprenden el intercambio de gases dentro del cuerpo. La respiración externa es el intercambio de gases entre los pulmones y la sangre. La respiración interna es el intercambio de gases entre la sangre y las células.
Los sistemas respiratorios y cardiovasculares participan por igual en la respiración. La insuficiencia de uno de ellos tiene el mismo efecto en el cuerpo: alteración de la homeostasis y muerte rápida de las células debido a la ausencia de oxígeno y a la acumulación de productos de desecho.
Órganos
Los Órganos Respiratorios pueden dividirse en vías respiratorias superiores, vías respiratorias inferiores y pulmones.
Las vías respiratorias superiores comprenden la cavidad nasal y la faringe, mientras que las vías respiratorias inferiores comprenden la laringe, la tráquea y el árbol bronquial.
La Respiración es un proceso involuntario y automático, en que se extrae el oxigeno del aire inspirado y se expulsan los gases de desecho con el aire espirado. El aire se inhala por la nariz, donde se calienta y humedece. Luego, pasa a la faringe, sigue por la laringe y penetra en la tráquea. A la mitad de la altura del pecho, la tráquea se divide en dos bronquios que se dividen de nuevo, una y otra vez, en bronquios secundarios, terciarios y, finalmente, en unos 250.000 bronquiolos. Al final de los bronquiolos se agrupan en racimos de alvéolos, pequeños sacos de aire, donde se realiza el intercambio de gases con la sangre. Los pulmones contienen aproximadamente 300 millones de alvéolos, que desplegados ocuparían una superficie de 70 metros cuadrados, unas 40 veces la extensión de la piel. La respiración cumple con dos fases sucesivas, efectuadas gracias a la acción muscular del diafragma y de los músculos intercostales, controlados todos por el centro respiratorio del bulbo raquídeo. En la inspiración, el diafragma se contrae y los músculos intercostales se elevan y ensanchan las costillas. La caja torácica gana volumen y penetra aire del exterior para llenar este espacio. Durante la espiración, el diafragma se relaja y las costillas descienden y se desplazan hacia el interior. La caja torácica disminuye su capacidad y los pulmones dejan escapar el aire hacia el exterior. Proporciona el oxigeno que el cuerpo necesita y elimina el Dióxido de Carbono o gas carbónico que se produce en todas las células.
Fisiología de la respiración
El aire penetra por las fosas nasales, donde quedan retenidas las partículas de polvo y es calentado; después pasa por la laringe a la tráquea, que conduce el aire a los bronquios, de aquí pasa a los bronquiolos y de estos a los alvéolos pulmonares. Los pulmones humanos tiene cerca de 300 millones de alvéolos que representan una superficie respiratoria de unos 70m2. El volumen de los pulmones está regulado por los cambios en el tamaño de la cavidad torácica y de la contracción y relajación de los músculos respiratorios. Normalmente el 10% del aire contenido en los pulmones es intercambiable en cada respiración, aunque durante respiraciones profundas y voluntarias es posible intercambiar hasta un 80% de aire. La capacidad de los pulmones es aproximadamente 5 litros de los cuales: ½ litro es tomado durante la inspiración normal, el resto es aire de reserva, del cual 1 y ½ litros es aire residual (que siempre queda en los pulmones), y 3 litros de aire complementario (se toma durante la inspiración profunda).
Leyes Físicas y Químicas de la Respiración
Para entender cómo se realiza el intercambio de gases respiratorios en el cuerpo, es necesario que se conozcan algunas leyes de los gases.
Ley de Charles: Esta ley indica “el volumen de un gas es directamente proporcional a su temperatura absoluta, manteniendo la presión constante”. Tomemos el experimento realizado por Charles, colocando un gas dentro de un cilindro con pistón, con una presión de 1 atmósfera. Cuando se calienta el gas, las moléculas se mueven más rápido y aumenta el número de colisiones dentro del cilindro, la fuerza de las moléculas que lo golpean lo hacen moverse al pistón hacia arriba. El movimiento del pistón proporciona una medida del aumento de volumen, mientras aumenta el espacio el número de colisiones disminuye. Se mantiene la presión de 1 atmósfera y el volumen aumenta en proporción directa a la temperatura. Conforme los gases entran en los pulmones que tienen una temperatura mayor, los gases se expanden y aumentan el volumen pulmonar.
Ley de Dalton: Su ley establece que “cada gas dentro de una mezcla de gases ejerce su propia presión como si el resto de los gases no estuvieran presentes”, Ley de Presiones parciales. La presión total es la suma de todas las presiones parciales de todos los gases que lo conforman. Esta ley es importante para la determinación del movimiento del oxígeno y del bióxido de carbono entre la atmósfera y los pulmones, entre los pulmones y la sangre y entre la sangre y las células corporales. Cuando una mezcla de gas se difunde a través de una membrana permeable, cada gas se difunde hacia el área de menor presión parcial. Cada gas se comporta como si el resto de los gases no existiera. El aire inspirado contiene aproximadamente 21% de oxígeno y 0,04% de bióxido de carbono; mientras que el aire espirado presenta menos oxígeno 16% y mas bióxido de carbono 4.5%.
Ley de Henry: Esta ley sostiene que “La capacidad del gas para permanecer en solución depende de su presión parcial y del coeficiente de solubilidad (atracción física y química por el agua)". A mayor presión parcial del gas sobre un líquido y a mayor coeficiente de solubilidad, mayor será la cantidad de gas que permanece en solución; es decir, la cantidad de gas que se disuelve en un líquido es proporcional a la presión parcial del gas y a su coeficiente de solubilidad, esto a temperatura constante. El coeficiente de solubilidad del bióxido de carbono es alto (0,57), el del oxígeno es bajo (0,024) y el del nitrógeno es muy bajo (0,012); por lo que aunque el aire que respiramos contenga un 79% de nitrógeno este gas no tiene efecto sobre las funciones corporales ya que se disuelve muy poco en el plasma sanguíneo debido a su bajo coeficiente de solubilidad a una presión al nivel del mar. En los casos de buzos o submarinistas (que portan un aparato de respiración marina) o mineros, los cuales respiran aire bajo una presión alta, el nitrógeno de la mezcla si puede afectar al organismo. Como la presión parcial del nitrógeno es mayor en una mezcla de aire comprimido que en el aire con una presión a nivel del mar, una cantidad considerable de nitrógeno se convierte en solución en el plasma y en el líquido intertiscial. Las cantidades excesivas de nitrógeno disuelto pueden producir síncope y otros síntomas similares a los de la intoxicación alcohólica; esto recibe el nombre de narcosis por nitrógeno o ruptura de las profundidades. Si el buzo sale a la superficie en forma lenta, el nitrógeno disuelto se puede eliminar por los pulmones; sin embargo si el ascenso es muy rápido, el nitrógeno entra en solución mucho antes que se pueda eliminar por la respiración. En lugar de eliminarse se forman burbujas de gas en el tejido nervioso; los síntomas incluyen dolor articular especialmente en brazos y piernas, acortamiento de la respiración, fatiga extrema, parálisis e inconsciencia. Todo esto se puede prevenir con un ascenso lento a la superficie o con el uso de un tanque de descompresión especial, el cual se usa cinco minutos después de llegar a la superficie.
Ley de Boyle: Afirma que “el volumen de un gas varía en forma inversa con la presión (a temperatura constante)”, es decir, que si el tamaño de un contenedor cerrado aumenta, la presión del aire dentro del contenedor disminuye y si el tamaño del contenedor disminuye, entonces su presión aumenta.
Ley de Graham: Si hacemos uso de la primera ley de Fick, se puede establecer una expresión para calcular el cociente entre las velocidades de difusión de dos gases:
Donde:
S: solubilidad
M: masa molecular
T: temperatura
Lo que indica que la velocidad de un gas a una presión y temperatura dada, es inversamente proporcional a la raíz cuadrada de su peso molecular. Esta ley puede considerar como una aplicación de la teoría cinética de los gases: a una determinada temperatura, las partículas más pequeñas se mueven más rápido y colisionan con mayor frecuencia y por ello se difunden más rápido.
Uno de los casos de esta ley es la difusión de aire a través de la barrera alvéolo-capilar. En este, suponiendo temperatura constante y el mismo gradiente de presión, y sustituyendo las solubilidades y masa molecular del oxígeno y dióxido de carbono
...