Transformación Lineal
IngeCastillo11 de Marzo de 2015
965 Palabras (4 Páginas)193 Visitas
Transformación Lineal
Así como cuando se estudian las funciones reales interesan especialmente las funciones continuas, cuando se estudian funciones de un espacio vectorial en otro interesan aquellas que poseen ciertas propiedades especiales, por ejemplo las que conservan operaciones. Es decir, que la función sea tal que "conserve" las dos operaciones fundamentales que definen la estructura de espacio vectorial.
En síntesis, podemos dar la siguiente definición:
Una función T: V ® W (de un espacio vectorial V en un espacio vectorial W)
se dice una transformación lineal si, para todo a, b Î V,
k Î K (K es el cuerpo de escalares) se tiene:
T (a + b) = T (a) + T (b)
T (k a) = k T (a)
que se puede resumir en T (a a + b b) = a T (a) + b T (b), llamada propiedad de linealidad.
Si T: V ® W es una transformación lineal, el espacio V se llama dominio de T y el espacio W se llama codominio de T.
Ejemplos
Ejemplo 1. A partir de la definición, analicemos si es lineal la siguiente transformación:
T: R2 ® R3 / " x Î R2 : T ((x1, x2)) = (x1 + x2, x1 - x2, x2)
Se deben verificar las dos condiciones de la definición:
a) ¿ " x, y Î R2 : T (x + y) = T (x) + T (y) ?
x = (x1, x2)
y = (y1, y2)
x + y = (x1 + y1, x2 + y2)
T (x + y) = T (x1 + y1, x2 + y2) = (x1 + y1 + x2 + y2, x1 + y1 - x2 - y2, x2 + y2) =
= (x1 + x2, x1 - x2, x2) + (y1 + y2, y1 - y2, y2) = T (x) + T (y)
b) ¿ " x Î R2, " k Î R : T (k x) = k T (x) ?
T (k x) = T (k (x1, x2)) = T (k x1, k x2) = (k x1 + k x2, k x1 - k x2, k x2) =
= k (x1 + x2, x1 - x2, x2) =
= k T (x)
Se verifican las dos condiciones de la definición, entonces la transformación es lineal.
Ejemplo 2.
Analicemos ahora si T es lineal, siendo T: R2 ® R2 / " x Î R2 : T ((x1, x2)) = (x2, x1 + 2)
Se deben verificar las dos condiciones de la definición:
a) ¿ " x, y Î R2 : T (x + y) = T (x) + T (y) ?
x = (x1, x2)
y = (y1, y2)
x + y = (x1 + y1, x2 + y2)
T (x) + T (y) = (x2, x1 + 2) + (y2, y1 + 2) = (x2 + y2, x1 + y1 + 4)
T (x + y) = T (x1 + y1, x2 + y2) = (x2 + y2, x1 + y1 + 2) ¹ T (x) + T (y)
No se verifica esta condición, entonces la transformación no es lineal.
Matriz asociada a una transformación lineal
Si V y W tienen dimensión finita y uno tiene elegidas bases en cada uno de los espacios, entonces todo mapa lineal de V en W puede representarse por una matriz. Recíprocamente, toda matriz representa una transformación lineal.
Sean T:V→W una transformación lineal, B={v1, ..., vn} una base de V, C={w1, ..., wm} base de W. Para calcular la matriz asociada a T en las bases B y C debemos calcular T(vi) para cada i=1,...,n y escribirlo como combinación lineal de la base C:
T(v1)=a11w1+ ...+am1 wm, ..., T(vn)=a1nw1+ ...+amn wm.
La matriz asociada se nota C[T]B y es la siguiente:
Como un vector de W se escribe de forma única como combinación lineal de elementos de C, la matriz es única.
Gracias al teorema mencionado en la sección Teoremas básicos de las transformaciones lineales en espacios con dimensión finita, sabemos que dada cualquier elección de u1, ..., un existe y es única la transformación lineal que envía vi en ui. Por lo tanto, dada A cualquier matriz m × n, existe
...