Comunicacion Y Lenguaje
donisgodoy27 de Marzo de 2013
5.856 Palabras (24 Páginas)405 Visitas
INTRODUCCIÓN
________________________________________
La célula viva se asemeja a una industria química donde miles de reacciones ocurren dentro de un espacio, en este caso, un espacio microscópico. Por ejemplo, los azúcares son convertidos en aminoácidos y viceversa. El glucógeno es ensamblado a partir de miles de moléculas de glucosas; las proteínas a partir de aminoácidos. Por otro lado, estos polímeros serán hidrolizados cuando las necesidades de la células así lo requieran.
El metabolismo (del griego “metabole”, cambio) es la totalidad de los procesos químicos de un organismo. El metabolismo es “el mapa de rutas” de miles de reacciones químicas que ocurren en la célula. Las enzimas dirigen dichas rutas metabólicas, acelerando diferencialmente reacciones determinadas.
Como un todo, el metabolismo maneja las fuentes de materia y energía de la célula. Algunas rutas metabólicas liberan energía por ruptura de los enlaces químicas de moléculas complejas a compuestos más simple. Estos procesos de degradación constituyen el catabolismo celular o vías catabólicas. Por otro lado, existen vías anabólicas o reacciones químicas del anabolismo, las que consumen energía para construir moléculas de mayor tamaño a partir de moléculas más simples. Las vías metabólicos se interceptan de tal forma que la energía liberada de reacciones catabólicas (reacciones exergónicas) puede utilizarse para llevar a cabo reacciones anabólicas (reacciones endergónicas)
Así, la transferencia de energía del catabolismo al anabolismo se denomina acoplamiento energético.
OBJETIVOS
El objetivo del metabolismo es determinar qué sustancias encontrará nutritivas y cuáles encontrará tóxicas. Por ejemplo, algunas procariotas utilizan sulfuro de hidrógeno como nutriente, pero este gas es venenoso para los animales.2 La velocidad del metabolismo, el rango metabólico, también influye en cuánto alimento va a requerir un organismo.
Una característica del metabolismo es la similitud de las rutas metabólicas básicas incluso entre especies muy diferentes. Por ejemplo: la secuencia de pasos químicos en una vía metabólica como el ciclo de Krebs es universal entre células vivientes tan diversas como la bacteria unicelular Escherichia coli y organismos pluricelulares como el elefante.3 Esta estructura metabólica compartida es probablemente el resultado de la alta eficiencia de estas rutas, y de su temprana aparición en la historia evolutiva.4 5
Metabolismo
Modelo de relleno de superficies del adenosín trifosfato, una coenzima intermediaria principal en el metabolismo energético.
El metabolismo es el conjunto de reacciones bioquímicas y procesos físico-químicos que ocurren en una célula y en el organismo.1 Estos complejos procesos interrelacionados son la base de la vida a escala molecular, y permiten las diversas actividades de las células: crecer, reproducirse, mantener sus estructuras, responder a estímulos, etc.
La metabolización es el proceso por el cual el organismo consigue que sustancias activas se transformen en no activas.
Este proceso lo realizan en los seres humanos enzimas localizadas en el hígado. En el caso de las drogas psicoactivas a menudo lo que se trata simplemente es de eliminar su capacidad de pasar a través de las membranas de lípidos, de forma que ya no puedan pasar la barrera hematoencefálica, con lo que no alcanzan el sistema nervioso central.
Por tanto, la importancia del hígado y el porqué este órgano se ve afectado a menudo en los casos de consumo masivo o continuado de drogas.
El metabolismo se divide en dos procesos conjugados: catabolismo y anabolismo. Las reacciones catabólicas liberan energía; un ejemplo es la glucólisis, un proceso de degradación de compuestos como la glucosa, cuya reacción resulta en la liberación de la energía retenida en sus enlaces químicos. Las reacciones anabólicas, en cambio, utilizan esta energía liberada para recomponer enlaces químicos y construir componentes de las células como lo son las proteínas y los ácidos nucleicos. El catabolismo y el anabolismo son procesos acoplados que hacen al metabolismo en conjunto, puesto que cada uno depende del otro.
Esquema de las principales rutas metabólicas
La economía que la actividad celular impone sobre sus recursos obliga a organizar estrictamente las reacciones químicas del metabolismo en vías o rutas metabólicas, donde un compuesto químico (sustrato) es transformado en otro (producto), y este a su vez funciona como sustrato para generar otro producto, siguiendo una secuencia de reacciones bajo la intervención de diferentes enzimas (generalmente una para cada sustrato-reacción). Las enzimas son cruciales en el metabolismo porque agilizan las reacciones físico-químicas, pues hacen que posibles reacciones termodinámicas deseadas pero "desfavorables", mediante un acoplamiento, resulten en reacciones favorables. Las enzimas también se comportan como factores reguladores de las vías metabólicas, modificando su funcionalidad –y por ende, la actividad completa de la vía metabólica– en respuesta al ambiente y necesidades de la célula, o según señales de otras células.
Investigación y manipulación
Red metabólica del ciclo de Krebs de la planta Arabidopsis thaliana. Las enzimas y los metabolitos se muestran en rojo y las interacciones mediante líneas.
Clásicamente, el metabolismo se estudia por una aproximación centrada en una ruta metabólica específica. La utilización de los diversos elementos en el organismo son valiosos en todas las categorías histológicas, de tejidos a células, que definen las rutas de precursores hacia su producto final.6 Las enzimas que catabolizan estas reacciones químicas pueden ser purificadas y así estudiar su cinética enzimática y las respuestas que presentan frente a diversos inhibidores. Otro tipo de estudio que se puede llevar a cabo en paralelo es la identificación de los metabolitos presentes en una célula o tejido; al estudio de todo el conjunto de estas moléculas se le denomina metabolómica. Estos estudios ofrecen una visión de las estructuras y funciones de rutas metabólicas simples, pero son inadecuados cuando se quieren aplicar a sistemas más complejos como el metabolismo global de la célula.7
En la imagen de la derecha se puede apreciar la complejidad de una red metabólica celular que muestra interacciones entre tan sólo 43 proteínas y 40 metabolitos: esta secuencia de genomas provee listas que contienen hasta 45.000 genes.8 Sin embargo, es posible usar esta información para reconstruir redes completas de comportamientos bioquímicos y producir más modelos matemáticos holísticos que puedan explicar y predecir su comportamiento.9 Estos modelos son mucho más efectivos cuando se usan para integrar la información obtenida de las rutas y de los metabolitos mediante métodos clásicos con los datos de expresión génica obtenidos mediante estudios de proteómica y de chips de ADN.10
Una de las aplicaciones tecnológicas de esta información es la ingeniería metabólica. Con esta tecnología, organismos como las levaduras, las plantas o las bacterias son modificados genéticamente para hacerlos más útiles en algún campo de la biotecnología, como puede ser la producción de drogas, antibióticos o químicos industriales.11 12 13 Estas modificaciones genéticas tienen como objetivo reducir la cantidad de energía usada para producir el producto, incrementar los beneficios y reducir la producción de desechos.14
Biomoléculas principales
Estructura de un lípido, el triglicérido.
La mayor parte de las estructuras que componen a los animales, plantas y microbios pertenecen a alguno de estos tres tipos de moléculas básicas: aminoácidos, glúcidos y lípidos (también denominados grasas). Como estas moléculas son vitales para la vida, el metabolismo se centra en sintetizar estas moléculas, en la construcción de células y tejidos, o en degradarlas y utilizarlas como recurso energético en la digestión. Muchas biomoléculas pueden interaccionar entre sí para crear polímeros como el ADN (ácido desoxirribonucleico) y las proteínas. Estas macromoléculas son esenciales en los organismos vivos. En la siguiente tabla se muestran los biopolímeros más comunes:
Tipo de molécula Nombre de forma de monómero
Nombre de formas de polímero
Proteínas
Aminoácidos
Polipéptidos
Carbohidratos
Monosacáridos
Polisacáridos
Ácidos nucleicos
Nucleótidos
Polinucleótidos
Aminoácidos y proteínas
Las proteínas están compuestas por los aminoácidos, dispuestos en una cadena lineal y unidos por enlaces peptídicos. Las enzimas son proteínas que catalizan las reacciones químicas en el metabolismo. Otras proteínas tienen funciones estructurales o mecánicas, como las proteínas del citoesqueleto que forman un sistema de andamiaje para mantener la forma de la célula.15 16 Las proteínas también son partícipes de la comunicación celular,
...