ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Concepcion Del Hombre


Enviado por   •  24 de Octubre de 2013  •  2.549 Palabras (11 Páginas)  •  232 Visitas

Página 1 de 11

Los tilacoides son sacos aplanados, o vesículas, que forman parte de la estructura de la membrana interna del cloroplasto; sitio de las reacciones captadoras de luz de la fotosíntesis y de la fotofosforilación; las pilas de tilacoides forman colectivamente las granas.

Los tilacoides se apilan como monedas y las pilas toman colectivamente el nombre de grana (plural neutro de granum). El medio que rodea a los tilacoides se denomina estroma del cloroplasto. Los tilacoides son rodeados por una membrana que delimita el espacio intratilacoidal, o lumen. Las membranas de los tilacoides contienen sustancias como los pigmentos fotosintéticos (clorofila, carotenoides, xantofilas) y distintos lípidos ; proteínas de la cadena de transporte de electrones fotosintética y enzimas, como la ATP-sintetasa.

Están compuestos de dos membranas concetricas y contienen vesicula.

Los tilacoides sirven para convertir la energía luminosa a química como la clorofila y forman los cloroplastos.

Vías alternas de la foto respiración.

Actividad 6.fotosintesis C3, C4 y CAM pag. 52

CICLO DE CALVIN-BENSON (CICLO DEL C3)

En esta se construyen azúcares a partir del dióxido de carbono, usando ATP y NADPH usados durante las reacciones dependientes de la luz. La energía en las moléculas de ATP y NADPH se usa para construir enlaces covalentes dentro de una molécula de azúcar. Los átomos de hidrogeno y los electrones (que se unen con protones para formar mas átomos de hidrogeno) dentro de las moléculas de NADPH son incorporados en la estructura de una molécula de azúcar.

El azúcar es construido por una vía bioquímica llamada el ciclo de Calvin-Benson, que se ubica dentro del fluido interior (citosol) de una bacteria fotosintetizadora o dentro del fluido interior (estroma) de un cloroplasto.

El ciclo de Calvin-Benson es una vía bioquímica que construye un azúcar de tres carbonos a partir del dióxido de carbono, átomos de hidrogeno y energía química. La vía es un ciclo en la cual la molécula que la inicia –bifosfato de ribulosa (RuBP)- es el producto final que comienza la misma vía nuevamente.

El ciclo comienza cuando el dióxido de carbono se una con el RuBP, que es una molécula de seis carbonos (la enzima que cataliza esta reacción, llamada carboxilasa del RuBP, es la proteína más abundante en la Tierra). El producto de esta unión, una molécula de seis carbonos, inmediatamente se rompe para formar dos moléculas de ácido fosfoglicérico (PGA), que es una molécula de tres carbonos. Cada PGA entonces recobra un grupo de fosfato a partir del ATP (junto con la energía que este transporta) y dos átomos de hidrogeno (junto con la energía transportada en sus electrones excitados). Estos dos átomos de hidrogeno provienen del NADPH (que proporciona un átomo de hidrogeno y un electrón, y un protón libre. Las dos moléculas de PGA son convertidas en estas reacciones en dos moléculas de fosfato de gliceraldehído (GP).

Tres moléculas de dióxido de carbono son procesadas en tres turnos del ciclo. Ellas son recobradas por tres moléculas del RuBP para formar seis moléculas de PGA. Estas moléculas, a su vez, forman seis moléculas de fosfato de gliceraldehído.

La Vía Del C4

Como el dióxido de carbono no es un gas muy abundante (que comprende solo el 0.03% de la atmósfera), no es fácil para las plantas obtener el que necesitan. Este problemas e complica aun mas por el hecho de que el intercambio gaseoso solo puede ocurrir a través de una superficie húmeda. Las superficies de hojas y otras partes vegetales expuestas están cubiertas con una capa impermeable que ayuda a impedir la perdida excesiva de vapor de agua. De este modo, la entrada y salida de gases se limita a poros diminutos, llamados estomas, que suelen concentrarse en las caras inferiores del as hojas (envés). Tales aberturas conducen al interior del a hoja, constituido por una capa de células que contienen cloroplastos llamada mesófilo, con muchos espacios aéreos y muy alta concertación de vapor de agua.

Los estomas se abren y cierran en respuesta a factores ambientales como contenido de agua o intensidad de la luz. En condiciones cálidas y secas, se cierran parar aducir la perdida de vapor de agua. Como resultado el suministro de dióxido de carbono se reduce en gran medida. Resulta irónico el hecho de que el CO2 es potencialmente menos asequible en los momentos precisos en que se disponed e la máxima intensidad de luz solar para impulsar las reacciones foto dependientes.

Muchas especies vegetales que viven en ambientes cálidos y secos han desarrollado adaptaciones que les permiten fijar inicialmente dióxido de carbono por una de dos vías que les ayudan a minimizar la perdida de agua. Estas vías, conocidas como C4 y CAM actúan en el citosol; ambas solo preceden al ciclo de Calvin (ciclo C3), n ola sustituyen.

Vía CAM

Una serie de plantas que se encuentran sobre todo en los ambientes áridos y microclimas secos reducen en gran medida la perdida de agua durante la fotosíntesis efectuando una secuencia modificada de reacciones de asimilación de carbono que comprenden la acumulación de malato en la noche.

Debido a que la secuencia de reacciones asociadas con la acumulación nocturna de este ácido fue descubierta en las Crassulaceae, una familia que comprende cactos y muchas otras plantas, tales como orquídeas y bromelias, esta secuencia ha recibido el nombre de metabolismo ácido de la crasulácea, o CAM. Las plantas CAM con importancia económica incluyen la piña y muchas plantas ornamentales.

Las plantas CAM toman el CO2 dentro de las células mesofilicas a través de los estomas abiertos por la noche, debido a que la pérdida de agua a través de los estomas es mucho menor a temperaturas más frías de la noche que durante el día. El CO2 es fijado por la reacción de la carboxilasa de PEP, y el oxalacetato producido es reducido a malato el cual es entonces translocado dentro de la vacuola. El transporte de malato dentro de la vacuola es necesario para mantener un pH cercano al neutro en el citosol, ya que concentración celular de este es ácido puede llegar a ser de 0.2 M hacia el fin de la noche.

Una característica importante de la regulación en la vía de CAM es la inhibición de la carboxilasa de PEP por malato y pH bajo. Durante el día, cuando la concentración citosólica de malato es levada y el pH es bajo, la carboxilasa de PEP en efecto está inhibida. Esta inhibición es indispensable para evitar ciclar inútilmente el CO2 y el malato por la carboxilasa

...

Descargar como (para miembros actualizados)  txt (15.8 Kb)  
Leer 10 páginas más »
Disponible sólo en Clubensayos.com