ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

ADMINISTRACIÓN FINANCIERA III Semestre CÁLCULO UNIVARIADO

ginaquirogaTrabajo20 de Octubre de 2020

568 Palabras (3 Páginas)268 Visitas

Página 1 de 3

[pic 1]

ADMINISTRACIÓN FINANCIERA III Semestre

CÁLCULO UNIVARIADO

        (CAT Suba)

CIPA #4

Gina Quiroga Torres    Cod: 080350422019
Laura Castaño Aragón    
Cod: 080350612019
Marcela Olarte Ortega    
Cod: 080350492019

PREGUNTAS GENERADORAS

  1. ¿Cuál es la utilidad de matrices en la solución de los diferentes cálculos financieros?

RTA: La multiplicación de matrices es la solución de los diferentes cálculos financieros debido a que para calcular el costo de algún producto debemos tener en cuenta la cantidad que se compra del mismo producto ya que en muchas ocasiones cuando se compra en cantidad el costo disminuye; para hallar la utilidad de la producción debemos tener en cuenta todas las variables las cuales son: costos y gastos operaciones y no operaciones con el fin de llegar a un punto de equilibrio. La importancia de poder contar con estas matrices es querer presentar una ventaja ante los demás mercados de las áreas en función de disminución de costos por simulación y por rastreo. Además de que reduce tiempos y esto conlleva a la mejor toma de decisiones por parte de la gerencia.

  1. ¿Entre matrices y determinantes hay diferencias? ¿Cuáles son?

RTA: La principal diferencia entre las matrices matriz es una manera de expresar datos o números a través de ecuaciones lineales, y los determinantes en cambio, van relacionados de manera única a cierto tipo de matrices dando el resultado de una operación.  

  1. ¿Qué operaciones se pueden definir con matrices? ¿Cuál es el proceso para cada caso?

RTA: Las operaciones de las matrices son como la suma, resta y multiplicación. Denominamos (m) para la dimensión de las filas y (n) para la dimensión de las columnas.

SUMA Y RESTA: La unión de dos o más matrices solo puede hacerse si dichas matrices tienen la misma dimensión. Cada elemento de las matrices puede sumarse con los elementos que coincidan en posición en diferentes matrices.

[pic 2]

MULTIPLICACIÓN: Generalmente, la multiplicación de matrices cumple la propiedad no conmutativa, es decir, importa el orden de los elementos durante la multiplicación. Existen casos llamados matrices conmutativas que sí cumplen la propiedad. Para multiplicar dos matrices necesitamos que el número de columnas de la primera matriz sea igual al número de filas de la segunda matriz.

[pic 3]

DIVISIÓN: La división de matrices se puede expresar como la multiplicación entre la matriz que iría en el numerador multiplicada por la matriz inversa que iría como denominador.

[pic 4]

  1. ¿Qué transformaciones elementales se pueden hacer sobre una matriz?

RTA: Las transformaciones elementales pueden ser: Son muy importante en el cálculo de determinantes.

  • Permutar 2 filas o 2 columnas.
  • Multiplicar o dividir una línea por un número no nulo.
  • Sumar o restar a una línea otra paralela multiplicada por un número no nulo.
  • Suprimir las filas o columnas que sean nulas,
  • Suprimir las filas o columnas que sean proporcionales a otras.

  1. ¿Qué significado tiene la inversa de una matriz?

RTA: Una matriz A de orden n (n filas y n columnas) tiene inversa cuando su rango es n, es decir, cuando el rango de dicha matriz coincide con su orden, o también, cuando su determinante sea distinto de cero.

  1. Dada una matriz, ¿existe siempre su matriz inversa?

RTA: Tan sólo una matriz cuadrada puede tener inversa. Además, la matriz debe tener determinante diferente de 0.

[pic 5]

...

Descargar como (para miembros actualizados) txt (4 Kb) pdf (97 Kb) docx (36 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com