Condiciones De Continuidad De Una Funcion
ache19906 de Noviembre de 2012
309 Palabras (2 Páginas)793 Visitas
Condiciones De Continuidad De Una Función
Una función continua es aquella cuya regla de correspondencia asigna incrementos pequeños en la variable dependiente a pequeños incrementos de los elementos del dominio de dicha función, es decir, , y usando la expresión , queda donde en este caso, . Ello quiere decir que , y si este último límite existe significa en consecuencia por un teorema de límites (un límite existe si y sólo si los dos límites laterales existen y son iguales) que toda función que cumpla con
es continua en el punto .
Condición no recíproca
La relación no funciona a la inversa: el que una función sea continua no garantiza su derivabilidad. Es posible que los límites laterales sean equivalentes pero las derivadas laterales no; en este caso la función presenta un punto anguloso en dicho punto.
Un ejemplo puede ser la función valor absoluto (también llamada módulo) en el punto . Dicha función se expresa:
Para valores infinitamente cercanos a 0, por ambas ramas, el resultado tiende a 0. Y el resultado en el punto 0 es también 0, por lo tanto es continua. Sin embargo, las derivadas resultan:
Cuando vale 0, las derivadas laterales dan resultados diferentes. Por lo tanto, no existe derivada en el punto, a pesar de que sea continuo.
De manera informal, si el gráfico de la función tiene puntas agudas, se interrumpe o tiene saltos, no es derivable.
Derivada Definidas
Se llama integral definida de la función f(x) 0 entre a y b (a estos dos valores se les denomina límites de integración), al área de la porción de plano limitada por la gráfica de la función, el eje X y las rectas paralelas x = a y x = b
Ejemplo:
5
...