ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Diodo Semiconductor


Enviado por   •  12 de Junio de 2014  •  3.231 Palabras (13 Páginas)  •  321 Visitas

Página 1 de 13

Diodo Semiconductor

El diodo semiconductor está constituido fundamentalmente por una unión P-N, añadiéndole un terminal de conexión a cada uno de los contactos metálicos de sus extremos y una cápsula que aloja todo el conjunto, dejando al exterior los terminales que corresponden al ánodo (zona P) y al cátodo (Zona N)

El diodo deja circular corriente a través suyo cuando se conecta el polo positivo de la batería al ánodo, y el negativo al cátodo, y se opone al paso de la misma si se realiza la conexión opuesta. Esta interesante propiedad puede utilizarse para realizar la conversión de corriente alterna en continua, a este procedimiento se le denomina rectificación.

En efecto. si se aplica a este diodo una tensión alterna, únicamente se producirá circulación de corriente en las ocasiones en que el ánodo sea más positivo que el cátodo, es decir, en las alternancias positivas, quedando bloqueado en las ascendencias negativas, lo que impide el paso de la corriente por ser en estas ocasiones el ánodo más negativo que el cátodo.

La corriente resultante será «pulsante», ya que sólo circulará en determinados momentos, pero mediante los dispositivos y circuitos adecuados situados a continuación puede ser convertida en una corriente continua constante, que es el que se emplea actualmente casi en exclusiva; presenta sobre el de vacío algunas ventajas fundamentales: - Es de tamaño mucho más reducido, lo que contribuye a la miniaturización de los circuitos.

- La cantidad de calor generado durante el funcionamiento es menor, ya que no necesita ningún calentamiento de filamento. - Funciona con tensiones mucho más bajas, lo que posibilita su empleo en circuitos alimentados a pilas o baterías.

- Pueden ser utilizados en equipos que manejen grandes corrientes, aplicación que con diodos de vacío resultaba prohibitiva en ocasiones por el gran tamaño de éstos. Existen diodos semiconductores de muy pequeño tamaño para aplicaciones que no requieran conducciones de corrientes altas, tales como la demodulación en receptores de radio. Estos suelen estar encapsulados. en una caja cilíndrica de vidrio con los terminales en los extremos, aunque también se utiliza para ellos el encapsulado con plástico. Clasificación

Dentro del amplio conjunto de modelos y tipos diferentes de diodos semiconductores que actualmente existe en el mercado, se puede realizar una clasificación de forma que queden agrupados dos en varias familias, teniendo en cuenta aquellas características más destacadas y que, de hecho, son las que determinan sus aplicaciones. De esta forma se pueden encontrar las siguientes: - Diodos rectificadores de toda la gama de potencias, con encapsulado individual o en puente. - Diodos de señal de use general. - Diodos de conmutación. - Diodos de alta frecuencia. - Diodos estabilizadores de tensión. - Diodos especiales.

Diodo semiconductor

Formación de la región de agotamiento, en la gráfica z.c.e.

Un diodo semiconductor moderno está hecho de cristal semiconductor como el silicio con impurezas en él para crear una región que contiene portadores de carga negativa (electrones), llamado semiconductor de tipo n, y una región en el otro lado que contiene portadores de carga positiva (huecos), llamado semiconductor tipo p. Las terminales del diodo se unen a cada región. El límite dentro del cristal de estas dos regiones, llamado una unión PN, es donde la importancia del diodo toma su lugar. El cristal conduce una corriente de electrones del lado n (llamado cátodo), pero no en la dirección opuesta; es decir, cuando una corriente convencional fluye del ánodo al cátodo (opuesto al flujo de los electrones).

Al unir ambos cristales, se manifiesta una difusión de electrones del cristal n al p (Je). Al establecerse una corriente de difusión, aparecen cargas fijas en una zona a ambos lados de la unión, zona que recibe el nombre de región de agotamiento.

A medida que progresa el proceso de difusión, la región de agotamiento va incrementando su anchura profundizando en los cristales a ambos lados de la unión. Sin embargo, la acumulación de iones positivos en la zona n y de iones negativos en la zona p, crea un campo eléctrico (E) que actuará sobre los electrones libres de la zona n con una determinada fuerza de desplazamiento, que se opondrá a la corriente de electrones y terminará deteniéndolos.

Este campo eléctrico es equivalente a decir que aparece una diferencia de tensión entre las zonas p y n. Esta diferencia de potencial (VD) es de 0,7 V en el caso del silicio y 0,3 V para los cristales de germanio.

La anchura de la región de agotamiento una vez alcanzado el equilibrio, suele ser del orden de 0,5 micras pero cuando uno de los cristales está mucho más dopado que el otro, la zona de carga espacial es mucho mayor.

Cuando se somete al diodo a una diferencia de tensión externa, se dice que el diodo está polarizado, pudiendo ser la polarización directa o inversa.

Polarización directa de un diodo

Polarización directa del diodo pn.

En este caso, la batería disminuye la barrera de potencial de la zona de carga espacial, permitiendo el paso de la corriente de electrones a través de la unión; es decir, el diodo polarizado directamente conduce la electricidad.

Para que un diodo esté polarizado directamente, se debe conectar el polo positivo de la batería al ánodo del diodo y el polo negativo al cátodo. En estas condiciones podemos observar que:

• El polo negativo de la batería repele los electrones libres del cristal n, con lo que estos electrones se dirigen hacia la unión p-n.

• El polo positivo de la batería atrae a los electrones de valencia del cristal p, esto es equivalente a decir que empuja a los huecos hacia la unión p-n.

• Cuando la diferencia de potencial entre los bornes de la batería es mayor que la diferencia de potencial en la zona de carga espacial, los electrones libres del cristal n, adquieren la energía suficiente para saltar a los huecos del cristal p, los cuales previamente se han desplazado hacia la unión p-n.

• Una vez que un electrón libre de la zona n salta a la zona p atravesando la zona de carga espacial, cae en uno de los múltiples huecos de la zona p convirtiéndose en electrón de valencia. Una vez ocurrido esto el electrón es atraído por el polo positivo de la batería y se desplaza de átomo en átomo hasta llegar al final del cristal p, desde el cual se introduce en el hilo conductor y llega

...

Descargar como (para miembros actualizados)  txt (20.1 Kb)  
Leer 12 páginas más »
Disponible sólo en Clubensayos.com