Seminario
cheri30 de Enero de 2014
5.083 Palabras (21 Páginas)227 Visitas
República Bolivariana de Venezuela.
Ministerio del Poder Popular para la Defensa.
Universidad Nacional Experimental Politécnica
De la Fuerza Armada Bolivariana.
Extensión Puerto Píritu.
Núcleo Anzoátegui.
Profesor: Bachilleres:
Cruz Gómez Ramírez, Joan Cherie
C.I 21231970
Enero, 2012
Parte I. Televisión y Radiodifusión Sonora
1.- ¿Qué es la radio propagación?
El término radiofrecuencia, también denominado espectro de radiofrecuencia o RF, se aplica a la porción menos energética del espectro electromagnético, situada entre unos 3 kHz y unos 300 GHz. El hercio es la unidad de medida de la frecuencia de las ondas, y corresponde a un ciclo por segundo.[1] Las ondas electromagnéticas de esta región del espectro, se pueden transmitir aplicando la corriente alterna originada en un generador a una antena.
Las bases teóricas de la propagación de ondas electromagnéticas fueron descritas por primera vez por James Clerk Maxwell. Heinrich Rudolf Hertz, entre 1886 y 1888, fue el primero en validar experimentalmente la teoría de Maxwell.
El uso de esta tecnología por primera vez es atribuido a diferentes personas: Alejandro Stepánovich Popov hizo sus primeras demostraciones en San Petersburgo, Rusia; Nikola Tesla en San Luis (Misuri), Estados Unidos y Guillermo Marconi en el Reino Unido.
El primer sistema práctico de comunicación mediante ondas de radio fue el diseñado por Guillermo Marconi, quien en el año 1901 realizó la primera emisión trasatlántica radioeléctrica. Actualmente, la radio toma muchas otras formas, incluyendo redes inalámbricas, comunicaciones móviles de todo tipo, así como la radiodifusión.
Aunque se emplea la palabra radio, las transmisiones de televisión, radio, radar y telefonía móvil están incluidas en esta clase de emisiones de radiofrecuencia. Otros usos son audio, vídeo, radionavegación, servicios de emergencia y transmisión de datos por radio digital; tanto en el ámbito civil como militar. También son usadas por los radioaficionados.
7.- Explique la Propagación Terrestre de las ondas.
Ondas aéreas
Son aquellas que parten de la antena del emisor y llegan hasta la antena del receptor a través del propio aire pero sin llegar a la ionosfera. Según su trayectoria pueden ser: Ondas directas, reflejadas y otras influenciadas por ciertos efectos como son por refracción troposférica o por difracción.
Onda directa
Tocar terreno ni ionosfera. La atenuación es mínima, siendo únicamente la que se produce por el espacio abierto o agentes meteorológicos (lluvia, nieve,...) Es la típica de frecuencias superiores a 30MHz (V-U-SHF).
Un claro ejemplo lo tenemos en los emisores de radiodifusión FM y TV, en los que para conseguir máximas distancias es imprescindible tener la antena emisora lo más alta posible (o ubicaciones de repetidores o reemisores en cotas altas del terreno). Otro ejemplo lo tenemos en los radioenlaces de microondas (SHF o frecuencias >3GHz) en los que es imprescindible que haya visión directa para establecerse la comunicación.
Onda reflejada
Llega al receptor después de reflejarse en la tierra (o mar). Sufre gran atenuación por la propia naturaleza del terreno y depende mucho de éste. En ocasiones favorece el establecimiento de la comunicación a largas distancias.
Refracción Troposférica
Cuando una capa de aire frío se encuentra entre dos capas de aire caliente, puede ocurrir que la onda de refracte, esto es, que modifique su trayectoria.
Difracción (filo de la navaja)
Cuando entre el emisor y el receptor se encuentra una montaña o cordillera, puede ocurrir que las ondas modifiquen su trayectoria debido a la naturaleza del terreno (temperatura, humedad, etc.) consiguiéndose incluso, niveles de ganancia, en lugar de atenuaciones.
9.- Explique la difusión, reflexión y refracción de las ondas de radio.
Una onda de radio se distingue de una radiación luminosa por su frecuencia: algunas decenas de kilohertz o gigahertz para la primera, algunos centenares de térahertz para el segundo. Obviamente la influencia de la frecuencia de la onda es determinante para su propagación pero la mayoría de los fenómenos de la óptica geométrica (por ejemplo, la reflexión) se aplican también en la propagación de las ondas hertzianas.
En la práctica es frecuente que dos o varios fenómenos se apliquen simultáneamente al trayecto de una onda: reflexión y difusión, difusión y refracción... Estos fenómenos aplicados a las ondas radioeléctricas permiten a menudo establecer conexiones entre puntos que no están en vista directa.
Difusión.
El fenómeno de difusión puede producirse cuando una onda encuentra un obstáculo cuya superficie no es perfectamente plana y lisa. Es el caso de las capas ionizadas de la atmósfera, de la superficie del suelo en las regiones onduladas (para las longitudes de ondas más grandes) o de la superficie de los obstáculos (acantilados, bosques, construcciones...) para las ondas ultracortas (sobre algunos centenares de megaherz). Como en la óptica, la difusión depende de la relación entre la longitud de onda y las dimensiones de los obstáculos o irregularidades a la superficie de los obstáculos reflejantes. Estos últimos pueden también cambiar por las cortinas de lluvia (en hiperfrecuencias) o las zonas ionizadas de la alta atmósfera en las auroras polares (borealis y australis, Northern and Southern Lights).
Reflexión y refracción.
La información necesaria para una conexión que utiliza una reflexión sobre la capa E de la ionosfera es:
La potencia del emisor;
El diagrama de radiación de la antena;
La posición geográfica de cada una de las dos estaciones y también;
La capacidad de la capa E de la ionosfera para reflejar las ondas de radio.
Es el SSN (el término histórico es número de Wolf, que no depende de quién determina el número de manchas solares, veremos esto en la parte II de estas notas), y también la fecha y la hora del día del intento de conexión que permitirá al programa informático calcular las posibilidades de propagación ionosférica. Se conocerá la probabilidad de establecer la conexión en función de la frecuencia para un reporte de señal sobre ruido dado
La refracción es el cambio en la dirección de propagación de una onda, cuando pasa de un medio a otro en el que su velocidad es distinta, o cuando hay una variación espacial de la velocidad de la onda en el mismo medio.
El clima espacial condiciona la ionización en las distintas capas de la ionosfera, que cambia con la fecha y la hora. En el capítulo sobre propagación y clima espacial hablaremos de la refracción de las ondas de radio en la ionosfera, capacidad de la ionosfera, que permite contactos DX, de frecuencias máximas utilizables MUF y frecuencias mínimas utilizables LUF, de SWF (atenuación o pérdida de intensidad, también absorción, en Onda Corta, short wave fade, en inglés). Hablaremos también del número de Wolf.
Interferencia de dos ondas de radio
Es necesario distinguir la interferencia causada por dos señales independientes, en frecuencias muy cercanas, aparece el fenómeno de interferencia cuando la onda directa irradiada por un emisor se recibe al mismo tiempo que una onda reflejada. En este último caso, los tiempos de recorrido de las dos ondas son diferentes y las dos señales recibidas son defasadas. Pueden entonces presentarse varios casos:
Desfasamiento igual a un múltiplo del período: las señales están en fase y se refuerzan mutuamente. Sus amplitudes se añaden.
Desfasamiento de un múltiplo de un semi-período: las señales están en oposición de fase y la amplitud de la más débil se deduce de más fuerte. Si las dos señales tienen la misma amplitud, el nivel de la señal resultante es nulo.
Desfasamiento cualquiera: la amplitud de la señal que resulta es intermedia entre estos dos valores extremos.
Los fenómenos de interferencias pueden ser muy molestos cuando el tiempo de recorrido de la onda indirecta varía: la amplitud de la señal recibida varía entonces a un ritmo más o menos rápido. El fenómeno de interferencia se utiliza en aplicaciones que cubren numerosos ámbitos: medida de velocidad, radiogoniometría.
10.- Explique la Propagación en función de la gama de frecuencia.
Ondas kilométricas
Se propagan principalmente muy a baja altitud, por onda de suelo. Su gran longitud de onda permite el rodeo de los obstáculos. Para una misma distancia del emisor, el nivel de la señal recibida es muy estable. Este nivel disminuye tanto más rápidamente cuanto más se eleve la frecuencia. Las ondas de frecuencia muy baja penetran un poco bajo la superficie del suelo o el mar, lo que permite comunicar con submarinos en inmersión. Aplicaciones corrientes: radiodifusión sobre Grandes Ondas (Francia-Inter, RTL...), difusión de las señales horarias (relojes de radiocontroladores)... La potencia de estos emisores es enorme:
...