ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Antologia


Enviado por   •  28 de Septiembre de 2012  •  5.160 Palabras (21 Páginas)  •  352 Visitas

Página 1 de 21

Unidad 1: Teorema fundamental de cálculo.

El teorema fundamental del cálculo consiste (intuitivamente) en la afirmación de que la derivación e integración de una función son operaciones inversas. Esto significa que toda función continua integrable verifica que la derivada de su integral es igual a ella misma. Este teorema es central en la rama de las matemáticas denominada análisis matemático o cálculo.

El teorema es fundamental porque hasta entonces el cálculo aproximado de áreas -integrales- en el que se venía trabajando desde Arquímedes, era una rama de las matemáticas que se seguía por separado al cálculo diferencial que se venía desarrollando por Isaac Newton, Isaac Barrow y Gottfried Leibniz en el siglo XVIII y dio lugar a conceptos como el de las derivadas. Las integrales eran investigadas como formas de estudiar áreas y volúmenes, hasta que en ese punto de la historia ambas ramas convergieron, al demostrarse que el estudio del "área bajo una función" estaba íntimamente vinculado al cálculo diferencial, resultando la integración, la operación inversa a la derivación.

Una consecuencia directa de este teorema es la regla de Barrow, denominada en ocasiones segundo teorema fundamental del cálculo, y que permite calcular la integral de una función utilizando la integral indefinida de la función al ser integrada.

Primer teorema fundamental del cálculo.

Dada una función f integrable sobre el intervalo , definimos F sobre por . Si f es continua en , entonces F es derivable en y F'(c) = f(c).

Consecuencia directa del primer teorema fundamental del cálculo infinitesimal es:

Siendo f(t) una función integrable sobre el intervalo [a(x),b(x)] con a(x) y b(x) derivables.

1.1 Medición de figuras amorfas.

Calcular las áreas de una figura regular es una tarea muy fácil, por lo cual la sustitución de la longitud, anchura u otras cantidades en la fórmula produciría el resultado.

Sin embargo, la estimación del área bajo la curva de las funciones no es tan sencilla ya que existen figuras amorfas y no fórmulas directas para estimaresta área.

La integración puede ser utilizada fructíferamente en una situación semejante.

Existen cuatro gráficas posibles para las cuales el área necesita ser evaluada.

Estas son: 1 Cuando el área está limitada por la curva y = f(x), el eje x y las ordenadas x = a y x = b.

El gráfico de la función se muestra a continuación,

Para estimar el área de tal figura, considereque el área bajo la curva estácompuesto por un gran número de delgadas tiras verticales.

Suponiendo que hay una tira arbitraria y para la altura y una dxpara la anchura. El área de esta tira elemental sería, dA = y dx donde y = f(x)

El área total A de la región entre el eje x, la ordenada x = a y x = b y la curva y = f (x) será la sumatoria de las áreas de todas las tiras elementales en toda la región o la zona limitada.

Esto produce la fórmula, A = dA = y dx = f(x) dx La integral anterior puede ser evaluada mediante poner la función en su lugar e integrándola.

2. La segunda situación es cuando el área está delimitada por la curva x = g(y), el eje y, y las ordenadas y = y1 y y2 = y. La gráfica de la función se muestra a continuación,

Asuma que el área bajo la curva está compuesta de un gran número de tiras delgadas horizontales. Sea una tira arbitraria dypara la altura y xpara la longitud. El área de esta tira elemental sería, dA = x dy donde x = g(y)

El área total A de la región entre el eje x, la ordenada y = y1 y y2 = y, y la curva x = g(y) será la sumatoria de las áreas de todas las tiras elementales en toda la región o el área limitada. Esto produce la fórmula, A = dA = x dy = g(y) dy

3. Se presenta una tercera situación cuando la curva en cuestión se encuentra por debajo del eje x, entonces f(x) es menor que cero desde x = a hasta x = b, el área limitada por la curva y = f(x) y las ordenadas x = a y x = b, y el eje x es negativo.

Pero el valor numérico del área debe ser tomado en consideración,entonces

A = | f(x) dx|

4. Una última posibilidad sería que una parte de la curva esté por encima del eje x y otra parte esté por debajo del eje x. Sea A1 el área debajo del eje x y A2 el área por encimadel eje x. Por lo tanto, el área limitada por la curva y = f(x), el eje x y las ordenadas x = a y x = b serán,

A = |A1| + A2

Tomemos ahora un ejemplo para entender la solución de tales problemas,

Encuentre el área de la región limitada por la curva y2 = x y las rectas x = 1, x = 4 y por el eje x.

La curva y2 = x es una parábola con su vértice en el origen. El eje de x es la línea de simetría la cual es el eje de la parábola. El gráfico de la función dada sería,

El área de la región limitada es,

A = y dx = dx = 2/3 [x3/2]14 = 2/3 [43/2 – 13/2] = 2/3 [8 – 1] = 14/3

1.2 Notación sumatoria.

En muchas ocasiones las operaciones matemáticas requieren la adición de una serie de números para generar la suma total de todos los números de la serie. En tal escenario se hace difícil escribir la expresión que representa este tipo de operación. El problema empeora a medida que incrementan los números en la serie. Una solución es utilizar los primeros números de la serie, luego puntos suspensivos y finalmente los últimos números de la serie, como se muestra a continuación,

Esta expresión representa una operación que incluye lasuma de los primeros cien números naturales. En esta expresión hemos usadolos puntos suspensivos, los tres puntos en la sucesión, para simbolizar la ausencia de números en la serie.

Una solución aún mejor es hacer uso del símbolo sumatorio o sigma. Este es un tipo de técnica abreviada que ofrece una alternativa más conveniente para representar la operación sumatoria. Puede ser representada de la siguiente manera,

Aquí se representa la variable o los términos en la serie. El operador

...

Descargar como (para miembros actualizados)  txt (30.9 Kb)  
Leer 20 páginas más »
Disponible sólo en Clubensayos.com