ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Evolucion Historica D La Estadistica

exotik0819 de Noviembre de 2013

3.526 Palabras (15 Páginas)294 Visitas

Página 1 de 15

Evolución Histórica de la Estadística

Desde los comienzos de la civilización han existido formas sencillas de estadística, pues ya se utilizaban representaciones gráficas y otros símbolos en pieles, rocas, palos de madera y paredes de cuevas para contar el número de personas, animales o cosas.

Hacia el año 3000 a.C. los babilonios usaban pequeñas tablillas de arcilla para recopilar datos sobre la producción agrícola y sobre los géneros vendidos o cambiados mediante trueque. En el siglo XXXI a.C., mucho antes de construir las pirámides, los egipcios analizaban los datos de la población y la renta del país. Los libros bíblicos de Números y Crónicas incluyen, en algunas partes, trabajos de estadística. El primero contiene dos censos de la población de Israel y el segundo describe el bienestar material de las diversas tribus judías. En China existían registros numéricos similares con anterioridad al año 2000 a.C. Los griegos clásicos realizaban censos cuya información se utilizaba hacia el 594 a.C. para cobrar impuestos. El Imperio romano fue el primer gobierno que recopiló una gran cantidad de datos sobre la población, superficie y renta de todos los territorios bajo su control. Durante la edad media sólo se realizaron algunos censos exhaustivos en Europa. Los reyes carolingios Pipino el Breve y Carlomagno ordenaron hacer estudios minuciosos de las propiedades de la Iglesia en los años 758 y 762 respectivamente. Después de la conquista normanda de Inglaterra en 1066, el rey Guillermo I de Inglaterra encargó la realización de un censo. La información obtenida con este censo, llevado a cabo en 1086, se recoge en el Domes Day Book. El registro de nacimientos y defunciones comenzó en Inglaterra a principios del siglo XVI, y en 1662 apareció el primer estudio estadístico notable de población, titulado Observations on the London Bills of Mortality -Comentarios sobre las partidas de defunción en Londres. Un estudio similar sobre la tasa de mortalidad en la ciudad de Breslau, en Alemania, realizado en 1691, fue utilizado por el astrónomo inglés Edmund Halley como base para la primera tabla de mortalidad.

En el siglo XIX, con la generalización del método científico para estudiar todos los fenómenos de las ciencias naturales y sociales, los investigadores aceptaron la necesidad de reducir la información a valores numéricos para evitar la ambigüedad de las descripciones verbales. En nuestros días, la estadística se ha convertido en un método efectivo para describir con exactitud los valores de datos económicos, políticos, sociales, psicológicos, biológicos o físicos, y sirve como herramienta para relacionar y analizar dichos datos.

El trabajo del experto estadístico no consiste ya sólo en reunir y tabular los datos, sino sobre todo en el proceso de "interpretación" de esa información. El desarrollo de la teoría de la probabilidad ha aumentado el alcance de las aplicaciones de la estadística. Muchos conjuntos de datos se pueden aproximar, con gran exactitud, utilizando determinadas distribuciones probabilísticas; los resultados de éstas se pueden utilizar para analizar datos estadísticos. La probabilidad es útil para comprobar la fiabilidad de las inferencias estadísticas y para predecir el tipo y la cantidad de datos necesarios en un determinado estudio estadístico.

La Estadística es una ciencia matemática que trata de la recolección, clasificación y presentación de los hechos sujetos a una apreciación numérica y se utiliza para describir, analizar e interpretar ciertas características de un fenómeno o conjunto de individuos llamado población.

Aplicación de la Estadística

Existen muchas aplicaciones en los campos profesionales y prácticamente en todo campo se utiliza la estadística.

La estadística es aplicada en todas las ramas matemáticas e incluso fuera de ellas también es aplicada en los ámbitos sociales como censos de población. La estadística es muy utilizada también en la ingeniería aplicándose mediante procesos probabilísticos y estadísticos de análisis e interpretación de datos o características de un conjunto de elementos al entorno industrial, a efectos de ayudar en la toma de decisiones y en el control de procesos industriales.

A esta aplicación la podemos distribuir en tres partes y deducir que:

1. El estudio previo de técnicas para el establecimiento de un sistema operativo de una empresa.

2. El análisis necesario para la extracción de información de grandes cantidades de datos.

3. El control de calidad y la fiabilidad.

Para comprender el desarrollo de las aplicaciones de la estadística de la ingeniería hay que citar que los viejos modelos estadísticos fueron casi siempre de la clase de los modelos lineales de las gráficas y otros métodos que demostraban cantidades y datos.

Ahora complejos computadores junto con apropiados algoritmos numéricos están utilizando modelos no lineales y la creación de nuevos tipos tal cómo modelos lineales generalizados y modelos multinivel.

En el futuro inmediato la estadística aplicada en la ingeniería tendrá un nuevo énfasis en estadística “experimentales” y “empíricas”. Un gran número de paquetes estadísticos está ahora disponibles para los ingenieros.

Variables (tipos)

Una variable es una característica que al ser medida en diferentes individuos es susceptible de adoptar diferentes valores.

Tipos de variables

Variable independiente

Una variable independiente es aquella cuyo valor no depende del de otra variable.

La variable independiente en una función se suele representar por x.

La variable independiente se representa en el eje de abscisas.

Variable dependiente

Una variable dependiente es aquella cuyos valores dependen de los que tomen otra variable.

La variable dependiente en una función se suele representar por y.

La variable dependiente se representa en el eje ordenadas.

La variable y está en función de la variable x.

Variables estadísticas

Variable cualitativa

Las variables cualitativas se refieren a características o cualidades que no pueden ser medidas con números. Podemos distinguir dos tipos:

Variable cualitativa nominal

Una variable cualitativa nominal presenta modalidades no numéricas que no admiten un criterio de orden. Por ejemplo:

El estado civil, con las siguientes modalidades: soltero, casado, separado, divorciado y viudo.

Variable cualitativa ordinal o variable cuasi cuantitativa

Una variable cualitativa ordinal presenta modalidades no numéricas, en las que existe un orden. Por ejemplo:

La nota en un examen: suspenso, aprobado, notable, sobresaliente.

Puesto conseguido en una prueba deportiva: 1º, 2º, 3º,...

Medallas de una prueba deportiva: oro, plata, bronce.

Variable cuantitativa

Una variable cuantitativa es la que se expresa mediante un número, por tanto se pueden realizar operaciones aritméticas con ella. Podemos distinguir dos tipos:

Variable discreta

Una variable discreta es aquella que toma valores aislados, es decir no admite valores intermedios entre dos valores específicos. Por ejemplo:

El número de hermanos de 5 amigos: 2, 1, 0, 1, 3.

Variable contínua

Una variable continua es aquella que puede tomar valores comprendidos entre dos números. Por ejemplo:

La altura de los 5 amigos: 1.73, 1.82, 1.77, 1.69, 1.75.

En la práctica medimos la altura con dos decimales, pero también se podría dar con tres decimales.

Variable aleatoria

Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real.

Se utilizan letras mayúsculas X, Y,... para designar variables aleatorias, y las respectivas minúsculas (x, y,...) para designar valores concretos de las mismas.

Variable aleatoria discreta

Una variable aleatoria discreta es aquella que sólo puede tomar valores enteros.

Ejemplos

El número de hijos de una familia, la puntuación obtenida al lanzar un dado.

Variable aleatoria contínua

Una variable aleatoria continua es aquella que puede tomar todos los valores posibles dentro de un cierto intervalo de la recta real.

Ejemplos

La altura de los alumnos de una clase, las horas de duración de una pila.

Variable aleatoria binomial

La variable aleatoria binomial, X, expresa el número de éxitos obtenidos en cada prueba del experimento.

La variable binomial es una variable aleatoria discreta, sólo puede tomar los valores 0, 1, 2, 3, 4, ..., n suponiendo que se han realizado n pruebas.

Ejemplo

k = 6, al lanzar una moneda 10 veces y obtener 6 caras.

Variable aleatoria normal

Una variable aleatoria continua, X, sigue una distribución normal de media μ y desviación típica σ, y se designa por N(μ, σ), si se cumplen las siguientes condiciones:

1. La variable puede tomar cualquier valor: (-∞, +∞ )

2. La función de densidad, es la expresión en términos de ecuación matemática de la curva de Gauss.

Variable estadística bidimensional

Una variable bidimensional es una variable en la que cada individuo está definido por un par de caracteres, (X, Y).

Estos dos caracteres son a su vez variables estadísticas en las que sí existe relación entre ellas, una de las dos variables es la variable independiente y

...

Descargar como (para miembros actualizados) txt (21 Kb)
Leer 14 páginas más »
Disponible sólo en Clubensayos.com