ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Interes Compuesto

stefannypaola12 de Abril de 2013

824 Palabras (4 Páginas)630 Visitas

Página 1 de 4

Definiciones:

Interés compuesto

El interés compuesto representa la acumulación de intereses devengados por un capital inicial (CI) o principal a una tasa de interés (r) durante (n) periodos de imposición de modo que los intereses que se obtienen al final de cada período de inversión no se retiran sino que se reinvierten o añaden al capital inicial, es decir, se capitalizan.

El interés compuesto

El interés compuesto representa el costo del dinero, beneficio o utilidad de un capital inicial (C) o principal a una tasa de interés (i) durante un período (t), en el cual los intereses que se obtienen al final de cada período de inversión no se retiran sino que se reinvierten o añaden al capital inicial; es decir, se capitalizan, produciendo un capital final (Cf).

El interés compuesto

El interés compuesto es fundamental para entender las matemáticas financieras. Con la aplicación del interés compuesto obtenemos intereses sobre intereses, esto es la capitalización del dinero en el tiempo. Calculamos el monto del interés sobre la base inicial más todos los intereses acumulados en períodos anteriores; es decir, los intereses recibidos son reinvertidos y pasan a convertirse en nuevo capital.

Llamamos monto de capital a interés compuesto o monto compuesto a la suma del capital inicial con sus intereses. La diferencia entre el monto compuesto y el capital original es el interés compuesto.

El intervalo al final del cual capitalizamos el interés recibe el nombre de período de capitalización. La frecuencia de capitalización es el número de veces por año en que el interés pasa a convertirse en capital, por acumulación.

Tres conceptos son importantes cuando tratamos con interés compuesto:

1. El capital original (P o VA)

2. La tasa de interés por período (i)

3. El número de períodos de conversión durante el plazo que dura la transacción (n).

Tasas de interés:

Tasa de Interés Efectiva y Nominal

Cuando hablamos de tasa de interés efectiva, nos referimos a la tasa que estamos aplicando verdaderamente a una cantidad de dinero en un periodo de tiempo. La tasa efectiva siempre es compuesta y vencida, ya que se aplica cada mes al capital existente al final del periodo.

Si invertimos $100 al 2% efectivo mensual durante 2 meses obtendremos: en el primer mes $102 y $104,04 en el segundo mes, ya que estamos aplicando en el segundo mes la tasa de interés del 2% sobre el acumulado al final del segundo mes de $102.

Debemos recordar que cuando trabajamos con tasas efectivas no podemos decir que una tasa de interés del 2% mensual equivale al 24% anual, ya que esta tasa genera intereses sobre los intereses generados en periodos anteriores. En caso de invertir los $100 durante un año al 2% efectivo mensual el calculo sería el siguiente:

Usamos la formula de la tasa de interés compuesto:

• VF= $100*(1+0,02)^12

• VF= $126,82

La tasa efectiva del 2% mensual expresada anualmente sería ($126,82-$100)/$100= 26,82% diferente de 24%.

Por otro lado, la tasa de interés nominal es una tasa expresada anualmente que genera intereses varias veces al año. Para saber los intereses generados realmente necesitaremos cambiar esta tasa nominal a una efectiva.

Retomando el ejemplo anterior, si invertimos $100 al 24% capitalizable trimestralmente, significa que obtendremos intereses a una tasa del 6% cada tres meses. La tasa de interés la calculamos así:

• i=24%/4, dónde 4 es el numero de veces que se capitaliza al año (12meses/3meses)

• i=6%

Para saber el interés real generado utilizamos de nuevo la formula del interés compuesto:

• VF= $100*(1+0,06)^4

• VF= $126,24

La

...

Descargar como (para miembros actualizados) txt (5 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com