La Derivada
sylver28 de Septiembre de 2013
573 Palabras (3 Páginas)305 Visitas
A través de la historia se reconoce que a finales del siglo XVII y principios del XVIII se dio origen al cálculo diferencial a partir de algunos problemas , por ejemplo, el trazado de la tangente a una curva y las condiciones para obtener máximos y mínimos, la velocidad de los cuerpos en movimiento entre otros.
Los primeros matemáticos que abordaron estos problemas fueron Fermat (1601 - 1665) y Descartes (1596 – 1650), quienes crearon procesos para la construcción de las tangentes a una curva en un punto dado.
Newton (1642 – 1727) y Leibniz (1646 – 1716) quienes desarrollaron procedimientos para abordar los problemas enunciados.
Bolzano (1817) fue quien definió por primera vez la derivada como un límite y poco tiempo después Cauchy describió la derivada en su libro Resumé des leçons sur le calcul infinitesimal (1823) Tercera Lección, a partir de los aportes de Bolzano.
En cuanto a las investigaciones didácticas realizadas en la actualidad se pueden nombrar:
Historia y epistemología de la función derivada “como objeto del cálculo diferencial dan cuenta de la complejidad y de los vaivenes que en veinte siglos ha sufrido ésta, hasta adquirir el estatus de función derivada. El trabajo de cientos de seres humanos dedicados a su estudio, en distintas épocas y culturas, han hecho aportes que han permitido los cambios y el refinamiento de las ideas matemáticas de la función derivada para convertirla en un objeto (puro, aplicado y a enseñar), muy potente. Es tal la importancia de este objeto matemático que permite resolver problemas de las matemáticas, de las ciencias naturales, sociales y humanas.” [1]
7
Descripción de niveles de comprensión del concepto derivada “Este artículo presenta un estudio de caso que describe los niveles de comprensión del concepto derivada de seis estudiantes que cursaron cálculo diferencial en la Licenciatura en Matemáticas de la Universidad Pedagógica Nacional. El marco teórico utilizado se concentra en el desarrollo del esquema de derivada a través de tres niveles: Intra, Inter, Trans (Piaget y García, 1989). Se encontró una tendencia en algunos a interpretar la derivada en términos del proceso algorítmico y también como dependencia de la expresión algebraica de la función. Por otra parte, se hicieron evidentes las dificultades para transitar de la gráfica de la función hacia la gráfica de la función derivada.” [2]
Una propuesta didáctica para la enseñanza de la derivada “Este proyecto se inscribe en la línea marcada por los Doctores E. Wenzelburger y R. Cantoral. El problema que motiva esta investigación radica en que, con los cursos tradicionales de Cálculo Diferencial en el preuniversitario, cantidades significativas de estudiantes no logran comprender sus conceptos básicos, en especial el concepto de derivada. El proyecto tiene como objetivo el de elaborar una Propuesta Didáctica que contribuya a la comprensión del concepto de derivada a través de la formación de ideas variacionales, particularmente a través de la noción de rapidez de la variación” [3]
La comprensión de la derivada como objeto de investigación en didáctica de la matemática. “este trabajo revisa y organiza las aportaciones de las investigaciones hechas en Matemática Educativa para identificar el conocimiento generado La revisión se ha estructurado considerando: a) lo que se conoce sobre la comprensión de la derivada de una función en un punto; b) el papel que desempeñan los sistemas de representación; c) las características del desarrollo del esquema de derivada. Por último, se identifican líneas de investigación necesarias para aumentar nuestra comprensión de cómo los estudiantes dotan de significado y usan el concepto de derivada” [4]
8
...