MATERIALES Y RECURSOS EN EL APRENDIZAJE DE LAS MATEMÁTICAS
13 de Mayo de 2015
4.627 Palabras (19 Páginas)337 Visitas
MATERIALES Y RECURSOS EN EL APRENDIZAJE
DE LAS MATEMÁTICAS
CLÁSICOS
El maestro, el libro, el lápiz, el cuaderno y la pizarra.
POPULARES, PERO POCO UTILIZADOS
El tangram, calculadora, reglas, medidor de ángulos, geoplano, barras de fracciones, compás, bloques lógicos, bloques multibase, regletas, ábaco, ordenador, reloj, símil-dinero, juegos, geomag, sudokus, dominós, loterías, plastilina, pentominos, mecanos, puzzles …
OTROS, MÁS CERCANOS Y ACCESIBLES
Papel usado, envases reciclados, cuerdas, dados, barajas, palillos, folletos de tiendas, menús de restaurantes, almanaques, agendas telefónicas, abanicos, planos, etiquetas, horarios de guaguas… No se trata de sustituir unos materiales por otros, ni de si son mejores o peores, sino de aprovechar materiales baratos y abundantes en nuestro entorno.
¡Cuidado!
Los materiales que utilizamos son sólo un medio para conseguir algo, no son un fin en si mismos, por lo que debemos darles su justo valor y tiempo de uso. Tenemos que propiciar el aprendizaje de las matemáticas no de los materiales. El material es un medio dirigido a producir en el que aprende resultados fructíferos. Si no los produce hay que evitar su utilización.
Hay que negociar con la clase el uso de cualquier material:
Dejar claro el tiempo y tipo de uso
Cuidados que se necesiten si el material es delicado
De que manera debemos estar en el aula para evitar alborotos.
¿Cuándo?
Siempre que se introduzca una nueva competencia matemática, el proceso óptimo de enseñanza aprendizaje debería incluir la manipulación con distintos materiales, ya que sólo a partir de una enseñanza diversificada, rica en recursos y estrategias para abordar un mismo aprendizaje, conseguiremos que se interioricen los aprendizajes matemáticos de forma significativa. Después de este trabajo manipulativo se puede pasar a usar progresivamente recursos más elaborados de representación matemática y el trabajo escrito con lápiz y papel.
¿Por qué?
El uso de materiales didácticos y juegos adecuados permiten: - Mejorar la actitud de los alumnos ante las matemáticas. - Desarrollar la creatividad, acostumbrarlos a enfrentarse a problemas que no tienen una solución determinada de antemano. - Desarrollar estrategias para resolver problemas - Hacer unas matemáticas que se adapten a las posibilidades individuales de cada alumno. Los materiales permiten a profesores y alumnos “conversar” sobre algo concreto.
Papel usado Dados Barajas Palillos Almanaques Menús de restaurantes Tableros Etiquetas Horarios de colectivos Cinta métrica Folletos de tiendas Envases reciclados Cuerdas Teatro.
PAPEL USADO
NUMERACIÓN Damos la vuelta al folio usado, y rodeamos todas las cantidades numéricas que encuentre, podemos buscar cardinales y ordinales, compararlas, ordenarlas de menor a mayor, buscar las cantidades repetidas, buscar si hay alguna escrita con letra, etc. Repartir un folio reciclado a cada alumno. En él, escriben el dígito que quieran. Se les da una consigna del tipo “formen números del 100 al 200, formen números pares de 3000 a 4000, etc.” Los alumnos se agrupan libremente hasta formar la cantidad solicitada. Un mismo grupo puede ofrecer varias soluciones válidas. Con el mismo folio del ejemplo anterior, se agrupan primero (cuatro o cinco por grupo) y se les da la orden de “gana quien más se acerque a 4862”. Deberán colocar sus cifras para conseguir acercarse lo más posible.
LÍNEAS Y ÁNGULOS Hacer un pliegue en el papel para obtener una línea recta. Hacer otra paralela, perpendicular y secante. ¿Somos capaces de construir dos rectas que se corten en dos puntos? Con el folio, hacemos un cuadrado. Lo dividimos por la diagonal para obtener dos triángulos rectángulos. Así obtenemos ángulos de 45º y 90º. El de 45º lo dividimos por la mitad, ¿cuánto medirá? Con estas plantillas, estimamos la medida de ángulos dados. Para ello, unimos dos o tres diferentes. Hacemos determinados dobleces sin orden ninguno. Después buscamos ángulos agudos, obtusos, rectos... Papel usado
FRACCIONES Cada alumno tiene un folio. Es la unidad. Dividimos el folio en un número de partes iguales para llegar al concepto de fracción. Vamos pidiendo diferentes fracciones, de modo que tengan que doblar para obtener el denominador y nos muestren sólo las partes que diga el numerador. Esa será la representación gráfica de la fracción. Cuando esté entendido, pediremos fracciones mayores que la unidad, para que tengan que juntar el folio de otro compañero al suyo. De esta manera quedará claro cuando una fracción es mayor o menor que la unidad, cuando vale dos, tres o cuatro unidades enteras y por qué. Posteriormente podemos sumar o restar fracciones muy sencillas buscando otras equivalentes de igual denominador. Papel usado
DADOS
LA APUESTA Pueden participar 2, 3, 4, o 5 jugadores, cada uno con un dado. Antes de tirar, cada uno dice la cantidad total que estima que va a salir. A continuación se tiran los dados, se suma y se comprueba quién es el que se acercó más. Si es necesario, pueden apuntarse las cantidades. Otra opción es jugar a suma par o impar. El mecanismo del juego no varía.
Dados
TRIÁNGULOS Cada jugador por turno tira los tres dados, y en función de las cifras dice el tipo de triángulo que se podría hacer y su perímetro. Se anotan 2 puntos por cada acierto y un punto si descubren un fallo de los contrincantes. Hay que llegar a 10 puntos.
Dados
FRACCIONES Se juega con dos dados, y un número cualquiera de personas en círculo. Quien comienza dice “mayor” o “menor “, y tira los dados. El siguiente tiene que formar con los números que salgan una fracción mayor o menor que la unidad, en función de la orden que ha recibido. Si acierta se anota un punto. En caso de que la puntuación de los dados coincida, dirá “La unidad”, y prosigue el juego. Si hay muchos jugadores, se pueden colocar otro par de dados en el lado opuesto del círculo.
Barajas
SUMA 10 Juegan dos, tres o cuatro personas. Se trata de ir colocando, por turno, una carta de la baraja hasta que una fila, columna o diagonal sume 10. Entonces, el jugador se queda con esas tres cartas. Gana quien consiga más cartas. Cada vez que se pone una carta, se roba otra del mazo.
CALCULA EL NÚMERO Se decide un número entre los jugadores. Después se reparten barajas o cartas con números del 1 al 10. Con las operaciones que se quieran hay que aproximarse al número antes decidido.
Barajas
CANTIDADES El profesor puede sacar tres cartas al azar y pedir que en voz alta digan la cantidad de dos cifras mayor que se pueda formar, y la menor. Las cantidades de los distintos grupos se ordenan también de menor a mayor. Con las tres mismas cartas elegidas al azar, formar todos los números de dos dígitos posibles y ordenarlos. Se entregan ocho cartas a cada grupo. Con esas cifras y las operaciones que estemos trabajando, hay que construir una igualdad. Antes de la partida se pacta un dígito, por ejemplo el 4. Cada jugador tiene 7 cartas, y trata de hallar, juntando dos o más cartas, un múltiplo de 4. Si no tiene roba del mazo. Gana el que primero se queda sin cartas o el que más múltiplos haya encontrado. Introducción a la medida de superficie tomando como unidad cada cata de la baraja.
Palillos
EL PRISIONERO Imagina que el botón es un prisionero y los palillos son policías. Fíjate que hay cuatro policías por cada lado. Cambiando de posición 4 de ellos, conseguirás que el prisionero esté custodiado por cinco policías en cada lado.
QUITANDO PALILLOS Se comienza con dos grupos de 4 palillos. Hay dos jugadores. Cada uno puede quitar un palillo de cada grupo o un palillo solamente. Gana quien al alza el último palillo.
TRIÁNGULOS Construye con tres palillos un triángulo. Construye con cinco palillos dos triángulos. Construye con seis palillos cuatro triángulos.
Almanaques
ACTIVIDADES
¿Cuál es el menor número que aparece?
¿Cuál es el mayor número que aparece?
¿Por qué no hay números de tres cifras?
¿Qué diferencia hay entre dos números consecutivos?
¿Qué diferencia hay entre un número y el que tiene debajo?
¿Cuántas semanas completas o no hay en un mes?
¿Qué relación hay entre los días de la última fila de un mes y los de la primera fila del mes siguiente .
¿Cuántos domingos hay en un mes?
¿Por qué hay huecos con dos cantidades?
Si cogemos un cuadro de 2x2 o de 3x3, ¿Qué se relaciones podemos encontrar entre los 4 o los 9 números?
Menús de restaurantes
ACTIVIDADES
Con un menú impreso se puede trabajar:
- Precio del menú por persona.
- Precio de la comida para un grupo, compartiendo platos.
- Ajustar el menú a un precio determinado.
Comidas sanas y equilibradas.
Horarios
Planos y mapas.
Números de teléfono.
Escritura en otros idiomas.
Clasificación de los platos.
Menús de restaurantes
Menús de restaurantes
Tableros
JUEGO DEL 15 Juegan dos participantes con tres fichas cada uno. El primero pone su ficha en una casilla y después lo hace su compañero. Así sucesivamente hasta que alguno sume 15 con las tres fichas. Si ninguno lo ha conseguido
...