ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Medidas De Presion


Enviado por   •  30 de Junio de 2014  •  7.343 Palabras (30 Páginas)  •  223 Visitas

Página 1 de 30

MEDIDAS DE PRESION

Unidades y clases de presión

La presión es una fuerza por unidad de superficie y puede expresarse en unidades tales como pascal, bar, atmosferas, kilogramos por centímetro cuadrado y psi (libras por pulgada cuadrada). En él Sistema Internacional (S.I.) esta normalizada en pascal de acuerdo con las Conferencias Generales de Pesas y Medidas que tuvieron lugar en Paris en octubre de 1967 y 1971, y según la Recomendación Internacional número 17, ratificada en la III Conferencia General de la Organización Internacional de Metrologia Legal. El pascal es 1 newton por metro cuadrado (1 N/m²), siendo el newton la fuerza que aplicada a un cuerpo.

Tabla 1 de unidades de presión

de masa 1 kg, le comunica una aceleración de 1 m/s² . Como el pascal es una unidad muy pequeña, se emplean también el kilopascal (1 kPa = 10 ² bar), el megapascal (1 MPa = 10 bar) y el gigapascal (1 GPa = 10 000 bar). En la industria se utiliza también el bar (1 bar = 10^ 5 Pa = 1,02 kg/cm. cuadrado) y el kg/CM2, Si bien esta última unidad, a pesar de su uso todavía muy extendido, se emplea cada vez con menos frecuencia.

En la tabla 1. figuran las equivalencias entre estas unidades.

La presión puede medirse en valores absolutos o diferenciales. En la figura 1.1 se indican las clases de presión que los instrumentos miden comúnmente miden en las industrias.

Figura 1.1 Clases de Presion

La presion absoluta mide con relación al cero absoluto de presión (puntos A y A' de la figura 1.1).

La presión atmosférica es la presión ejercida por la atmosfera terrestre medida mediante un barometro. A nivel del mar, esta presión es proxima a 760 mm (29,9 pulgadas) de mercurio absolutas o 14,7 psia (libras por pulgada cuadrada absolutas) y estos valores definen la presión ejercida por la atmosfera estandar.

La presión relativa es la determinada por un elemento que mide la diferencia entre la presión absoluta y la atmosferica del lugar donde se efectúa la medición (punto B de la figura). Hay que señalar que al aumentar o disminuir la presión

atmosférica, disminuye o aumenta respectivamente la presión leída (puntos

(B yB'), si bien ello es despreciable al medir presiones elevadas.

La presión diferencial es la diferencia entre dos presiones, puntos C y C'. El vacío es la diferencia de presiones entre la presión atmosférica existente y la presión absoluta, es decir, es la presión medida por debajo de la atmosférica(puntos D, D' y D"). Viene expresado en mm columna de mercurio, mm columna de agua o pulgadas de columna de agua. Las variaciones de la presión atmosférica influyen considerablemente en las lecturas del vacío.

El campo de aplicación de los medidores de presión es amplio y abarca desde valores muy bajos (vacío) hasta presiones de miles de bar. En anexo 1 pueden verse los tipos de instrumentos y su campo de aplicación.

Los instrumentos de presión se clasifican en tres grupos: mecánicos, neumáticos, electromecánicos y electrónicos.

Elementos mecánicos

Se dividen en:

Elementos primarios de medida directa que miden la presión comparándola con la ejercida por un liquido de densidad y altura conocidas (barómetro de cubeta, manómetro de tubo en U, manómetro de tubo inclinado, manómetro de toro pendular, manómetro de campana), y .

Elementos primarios elásticos que se deforman por la presión interna del fluido que contienen.

Los elementos primarios elásticos mas empleados son: el tubo Bourdon, el elemento en espiral, el helicoidal, el diafragma y el fuelle.

El tubo Bourdon es un tubo de sección elìstica que forma un anillo casi completo, cerrado por un extremo. AI aumentar la presión en el interior del tubo, éste tiende a enderezarse y el movimiento es transmitido a la aguja indicadora, por un sector dentado y un piñón. La Iey de deformación del tubo Bourdon es bastante compleja y ha sido determinada empíricamente a través de numerosas observaciones y ensayos en varios tubos.

El material empleado normalmente en el tubo Bourdon es de acero inoxidable, aleación de cobre o aleaciones especiales como hastelloy y monel.

El elemento en espiral se forma arrollando el tubo Bourdon en forma de espiral alrededor de un eje común, y el helicoidal arrollando mas de una espira en forma de hè1ice. Estos elementos proporcionan un desplazamiento grande del extremo libre y por ello, son ideales para los registradores.

El diafragma consiste en una o varias capsulas circulares conectadas rigidamente entre si por soldadura, de forma que al aplicar presión, cada capsula se deforma y la suma de los pequeños desplazamientos es amplificada por un juego de palancas. El sistema se proyecta de tal modo que, al aplicar presión, el movimiento se aproxima a una relacion lineal en un intervalo de medida lo mas amplio posible con un minimo de histèresis y de desviación permanente en el cero del instrumento.

El material del diafragma es normalmente aleacion de niquel o inconel x. Se utiliza para pequeñas presiones.

El fuelle es parecido al diafragma compuesto, pero de una sola pieza flexible axialmente, y puede dilatarse o contraerse con un desplazamiento considerable.

Hay que señalar que los elementos de fuelle se caracterizan por su larga duración, demostrada en ensayos en los que han soportado sin deformación alguna millones de ciclos de flexión. El material empleado para el fuelle es usualmente bronce fosforoso y el muelle es tratado térmicamente para mantener fija su constante de fuerza por unidad de compresiòn. Se emplean para pequeñas presiones.

Los medidores de presión absoluta consisten en un conjunto de fuelle y muelle opuesto a un fuelle sellado al vacio absoluto. El movimiento resultante de la unión de los dos fuelles equivale a la presión absoluta del fluido. El material empleado para los fuelles es latón o acero inoxidable. Se utilizan para la medida exacta y el control preciso de bajas presiones, a las que puedan afectar las variaciones en la presión atmosférica. Por ejemplo, en el caso de emplear un vacuometro para el mantenimiento de una presión absoluta de 50 mm de mercurio en una columna de destilación, el punto de consigna seria de 710 mm, con una presión atmosférica de 760

...

Descargar como (para miembros actualizados)  txt (46.1 Kb)  
Leer 29 páginas más »
Disponible sólo en Clubensayos.com