REACCIONES DE OXIDACION - REDUCCION
lepega28 de Febrero de 2014
4.620 Palabras (19 Páginas)563 Visitas
REACCIONES DE OXIDO – REDUCCION
Las reacciones de óxido – reducción o REDOX son aquellas donde está involucrado un cambio en el número de electrones asociado a un átomo determinado, cuando este átomo o el compuesto del cual forma parte se transforma desde un estado inicial a otro final.
La gran mayoría de las reacciones redox ocurren con liberación de energía. Por ejemplo: la combustión de compuestos orgánicos que proporciona energía calórica, las reacciones que se realizan en una pila o batería, donde la energía química es transformada en energía eléctrica, y las reacciones más importantes, desde el punto de vista de nuestro curso, que ocurren a nivel del metabolismo de un ser viviente. Como los alimentos son substancias reducidas, el organismo las oxidada controladamente, liberando energía en forma gradual y de acuerdo a sus requerimientos. Esta energía es transformada en energía química en forma de ATP, la cual es utilizada para todos los procesos endergónicos que ocurren en los organismos.
Conceptos básicos.
Los términos “oxidación” y “reducción” provienen de reacciones que se han conocido durante siglos. Las antiguas civilizaciones aprendieron cómo transformar los óxidos y sulfuros metálicos en el metal, es decir, cómo reducir el mineral a metal. Un ejemplo es la reducción del óxido de hierro (III) con monóxido de carbono para obtener hierro metálico.
Fe2O3 (s) + 3 CO3 ------------- 2 Fe (s) + 3 CO 2 (g)
El Fe2O3 pierde oxigeno y se reduce, y el CO es el agente reductor gana oxigeno y se oxida. En esta reacción el monóxido de carbono es el agente que lleva a cabo la reducción del mineral de hierro para obtener el hierro metálico, de modo que el monóxido de carbono se le denomina el agente reductor.
Cuando Fe2O3 se reduce con monóxido de carbono, se retira oxígeno del mineral hierro y se agrega al monóxido de carbono, el cual se oxida por la adición del oxígeno para dar dióxido de carbono. Cualquier proceso en el cual se agrega oxígeno a otra sustancia es una oxidación.
En resumen:Las reacciones redox o de óxido-reducción son aquellas donde hay movimiento de electrones desde una sustancia que cede electrones (reductor) a una sustancia que capta electrones (oxidante).
• La sustancia que cede electrones, se oxida.
• La sustancia que gana electrones, se reduce.
Puede sonar raro que la sustancia que se oxida pierda electrones y la sustancia que se reduce gane electrones, porque uno se pregunta, ¿cómo se puede reducir una sustancia que está ganando algo? Precisamente porque lo que está ganando son electrones, que tienen carga negativa.
Uno en la vida puede ganar muchas cosas positivas, pero también puede ganarse problemas, que son cosas negativas. Por suerte, ganar o perder electrones no es problema para ninguna sustancias, pero puede serlo para ti si no sabes cómo responder una pregunta de oxidación reducción.
• La sustancia que se oxida al reaccionar, reduce a la otra sustancia con la cual está reaccionando, porque le está regalando electrones: decimos que es un reductor.
• La sustancia que se reduce al reaccionar, oxida a la otra sustancia con la cual está reaccionando, porque le está quitando electrones: decimos que es un oxidante.
•
Recapitulando:
Cede electrones = se oxida = es reductor.
Gana electrones = se reduce = es un oxidante.
Agente oxidante: es toda sustancia, molécula o ión capaz de captar electrones, por lo tanto se reduce.
Agente reductor: es toda sustancia, molécula o ión capaz de ceder electrones, por lo tanto se oxida.
Oxidación: Es el proceso mediante el cual un determinado elemento químico cede electrones, lo que se traduce en un aumento de su índice de oxidación.
Reducción: Es el proceso mediante el cual un determinado elemento químico capta electrones, lo que se traduce en una disminución de su índice de oxidación.
RADICALES LIBRES
Nuestro cuerpo esta compuesto por moléculas, o agrupaciones de átomos, cuyos electrones están habitualmente emparejados. Este emparejamiento da estabilidad electroquímica a la molécula.
Si por algún motivo un electrón de un átomo o una molécula queda libre, su inestabilidad le llevará a buscar otro para completar el par. Esto es un radical libre (RL), extremadamente inestable y, por tanto, con gran poder reactivo. Dado que los electrones no circulan solos por ahí, lo robará de otra molécula, que a su vez se quedará con un electrón desapareado, convirtiéndose así en otro radical libre, que a su vez tratará de emparejar su electrón. Y así sucesivamente. Si esto no se para, se desencadena un proceso que puede acabar por lesionar las células.
En las últimas décadas han surgido diversas teorías que intentan explicar el proceso de envejecimiento, entre ellas una de las que tiene más adeptos es la de los radicales libres. Esta teoría propone que, debido a la alteración de los mecanismos antioxidantes, se generan y acumulan los radicales libres y se produce un estrés oxidativo que daña estructuras celulares, lo cual conduce a la muerte celular.
FIG 1. CELULA AFECTADA POR RADICALES LIBRES
En todos los cambios arriba mencionados subyace la formación excesiva de radicales libres, mismos que ocasionan la destrucción de las macromoléculas de la célula (ácidos nucléicos, lípidos, carbohidratos y proteínas), induciendo una disminución en la resistencia al ambiente y un incremento en la fragilidad celular.
Los radicales libres son resultado de los procesos fisiológicos propios del organismo, como el metabolismo de los alimentos, la respiración y el ejercicio, o bien son generados por factores ambientales como la contaminación industrial, el tabaco, la radiación, los medicamentos, los aditivos químicos en alimentos procesados y los pesticidas. moléculas extremadamente reactivas, debido a que en el orbital más externo de su estructura tienen uno o más electrones sin aparear. Esta inestabilidad les confiere una avidez física por la captura de un electrón de cualquier otra molécula de su entorno, ocasionando que la estructura afectada quede inestable. De esta forma pueden establecer reacciones en cadena por medio de varios transportadores que se oxidan y se reducen secuencialmente, cuando un radical libre inicial modifica una biomolécula después de transferir o capturar un electrón. El daño es transmitido por medio de los transportadores, que incluso pueden ser moléculas circulantes.
FIG 2. FUENTES DE RADICALES LIBRES
Con base en esta definición, son radicales libres la molécula de oxígeno, el átomo de hidrógeno y los metales de transición (en estado iónico). La enorme reactividad de los radicales de oxígeno los lleva a interactuar ávidamente con otras moléculas.
Los radicales libres se forman por fuentes exógenas o endógenas. Un ejemplo de las segundas se observa en los sistemas biológicos, los cuales necesitan el oxígeno para su metabolismo energético.
Aproximadamente 80% del adenosín trifosfato (ATP) que utilizamos se forma en las mitocondrias, donde se consume entre 85 y 90% del oxígeno. En ellas, el oxígeno molecular disuelto entra a la cadena respiratoria para reducirse a agua, proceso en el que son generados en forma sucesiva, el anión superóxido, el peróxido de hidrógeno y el radical hidroxilo, especies de radicales derivadas del oxígeno.
Las estructuras subcelulares de generación de radicales libres incluyen principalmente las mitocondrias, los lisosomas, los peroxisomas, así como la membrana nuclear, la citoplásmica y la del retículo endoplásmico.
Los radicales libres juegan un papel fisiológico clave en la homeostasis, como es el caso del óxido nítrico sintetizado por la enzima óxido nítrico sintasa.
El óxido nítrico participa en la relajación muscular, el control del tono vascular y varias otras funciones que dependen de la guanosina monofosfato cíclico
(GMPc). El superóxido (O2¯ ) formado por la oxidasa NAD(P)H controla la producción de eritropoyetina, participa en el control de la ventilación, en la relajación del músculo liso y en la transducción de señales de varios receptores membranales que activan funciones inmunes.
En general, los radicales derivados de especies reactivas de oxígeno intervienen en la respuesta del estrés oxidativo (el bombardeo persistente de moléculas por radicales de oxígeno reactivo) y mantienen la homeostasis redox.
Los radicales libres son generados y utilizados por células como los neutrófilos, los monocitos, los macrófagos, los eosinofilos y los fibroblastos para eliminar organismos extraños como bacterias y virus. Pero el incremento de estos radicales conduce a un deterioro celular que se refleja de manera muy pronunciada durante la vejez, etapa en que se presentan varias enfermedades asociadas al daño oxidativo (destrucción molecular producida por radicales libres derivados del oxígeno).
Una vez formados los radicales libres por el metabolismo celular, éstos son capaces de reaccionar rápidamente con la molécula vecina. Los lípidos representan el grupo más susceptible debido a la presencia de dobles enlaces en sus ácidos grasos.
DAÑO A BIOMOLECULAS
PEROXIDACIÓN DE LÍPIDOS
Una molécula reactiva, como es el hidroxilo (•OH), ataca un ácido graso, constituyente de triacilgliceroles o fosfoacilgliceroles.
La interacción
...