ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Buckybola ó Buckminsterfullereno

yulius2929 de Octubre de 2012

3.006 Palabras (13 Páginas)991 Visitas

Página 1 de 13

Buckybola ó Buckminsterfullereno

El Buckminsterfullereno, buckybola o futboleno, es una molécula de fullereno esférico con la fórmula empírica C60. Presenta una estructura tridimensional en forma de jaula integrada por anillos de carbono unidos en una configuración de icosaedro truncado que asemeja a un balón de fútbol. Se encuentra formado por veinte anillos de carbono hexagonales y doce anillos pentagonales, con un átomo de carbono en los vértices de cada polígono, y un enlace en cada una de las aristas.

Fue preparado intencionalmente por primera vez en 1985 por Harold Kroto, James R. Heath, Sean O'Brien, Robert Curl y Richard Smalley en laUniversidad Rice. Curl y Smalley fueron galardonados con el Premio Nobel de Química por sus papeles en el descubrimiento de los buckminsterfullerenos, y su familia de moléculas relacionadas, los fullerenos. El nombre es un homenaje a Buckminster Fuller, el ingeniero inventor de lacúpula geodésica, que tiene una enorme semejanza con esta molécula. El buckminsterfullereno fue la primera molécula de fullereno en ser descubierta, y también es la que se encuentra con mayor frecuencia en la naturaleza, tanto es así que puede ser encontrada en el hollín en pequeñas cantidades.

El Buckminsterfullereno es la mayor partícula de materia que ha exhibido dualidad onda-partícula. Su descubrimiento inició la exploración de todo un campo nuevo de la química, el que comprende el estudio de los fullerenos.

Etimología

El nombre Buckminsterfullereno deriva del nombre del notorio inventor y futurista Buckminster Fuller. Uno de sus diseños de la estructura de domo geodésico mantuvo un gran parecido al C60; como resultado, los descubridores del alótropo dieron ese nombre a la molécula recién encontrada. Hoy, mucha gente se refiere al buckminsterfullereno y a la estructura de domo de Fuller como buckybolas. Un error común en la aplicación del término "buckybola" es cómo algunos se refieren al juguete compuesto de numerosas esferas magnéticas minúsculas.

Historia

El descubrimiento casual de una tercera forma alotrópica del carbono en 1985, dio a conocer una estructura fundamentalmente diferente de jaulas cerradas de carbono, que se volvieron conocidas como fullerenos. Esta nueva familia de "compuestos" no planos de carbono ha generado un inmenso interés dentro de la comunidad científica en un corto periodo de tiempo, con miles de artículos publicados sobre fullerenos y materiales basados en fullerenos en los años 1990s.

Descubrimiento

Las primeras predicciones teóricas de la existencia de moléculas de fullerenos aparecieron a finales de los años 1960 y comienzos de los 1970 pero permanecieron por mucho tiempo sin ser conocidas. A principios de los años 1970, la química de los configuraciones de los compuestos de carbono insaturados era estudiada por un grupo de la Universidad de Sussex, liderado por Harry Kroto y David Walton. En los años 1980, Richard Smalley y Bob Curl de la Universidad Rice desarrollaron una técnica para aislar estas sustancias. Para ello utilizaron un láser para vaporizar un compuesto adecuado para obtener agrupaciones de átomos. Kroto utilizó la misma técnica, empleando un blanco de grafito como objetivo para el láser.

El C60 fue descubierto por Robert Curl, Harold Kroto y Richard Smalley en 1985, utilizando la técnica de evaporación por láser de una muestra de grafito. Mediante espectrometría de masas encontraron evidencias de agrupaciones de átomos de tipo Cn (donde n>20), y que además las presencias mas abundantes eran las de C60 y C70. Por este descubrimiento fueron galardonados con el Premio Nobel de Química de 1996. El descubrimiento de las buckybolas fue fortuito, mientras los científicos se empeñaban en producir plasmas con átomos de carbono para replicar y caracterizar los compuestos desconocidos de la materia interestelar, el análisis de espectrometría de masas del producto obtenido sugirió la formación de moléculas de carbono esferoidales.

La evidencia experimental encontrada, un pico intenso a 720 unidades de masa atómica, indicaba que se había formado una molécula con 60 átomos de carbono, pero proveía muy poca información estructural. Luego de diversos experimentos de reactividad química el grupo de investigación concluyó que la estructura mas probable era la de una molécula esferoidal. La idea fue rápidamente racionalizada como la base para una estructura molecular en forma de jaula con una particular simetría molecular icosaédrica. Kroto mencionó su similitud con las cúpulas geodésicas del notable ingeniero, arquitecto, inventor y futurólogo Buckminster Fuller, eso condujo finalmente al nombre de buckminsterfullereno.

Investigaciones posteriores

La versatilidad de las moléculas de fullerenos ha conducido a un gran acuerdo de parte de los grupos investigadores para explorar sus propiedades. Una propiedad potencialmente útil es la gran capacidad de los espacios internos de estas moléculas de carbono con forma de jaula, donde pueden ser introducidos átomos de diferentes elementos para producir versiones empaquetadas de los mismos.

Experimentos seriados desarrollados entre 1985 y 1990 presentaron mayor evidencia de la estabilidad de esta molécula de C60, y proveyeron un marco de soporte mas sólido para la teoría de estructura en forma de jaula, llegando incluso a predecir algunas de las propiedades intensivas que un material formado por tales moléculas debería poseer. Alrededor de estas fechas una intensa investigación en teoría de grupos predijo que una molécula C60esferoidal sólo debería poseer cuatro bandas vibracionales activas en el espectro infrarojo como consecuencia de su simetría icosaédrica.

En 1989, los miembros del grupo Heidelberg/Tuscon, liderado por los físicos Wolfgang Krätschmer y Donald Huffman, observaron una absorción óptica inusual en láminas delgadas de carbono generadas por arco eléctrico entre barras de grafito. Ademas de otras características, los espectros de infrarrojo observados, mostraron cuatro bandas discretas de absorción en estrecha concordancia con aquellas propuestas para el C60. A raíz de estos resultados el grupo publicó un trabajo de investigación en el año 1990 donde detallaban la extracción en benceno de un material soluble a partir del grafito procesado por medio de arco eléctrico. El extracto fue cristalizado, y un análisis de cristalografía de rayos x demostró la consistencia de una estructura molecular de C60 con la forma de pequeñas esferas de aproximadamente 0,7 nanómetros de diámetro.

Síntesis

En 1990, W. Krätchmer y D. R. Huffman desarrollaron un método simple y eficiente para producir fullerenos en cantidades de gramos e incluso kilogramos el cual impulsó la investigación de los fullerenos. En esta técnica, hollín de carbón es producido a partir de dos electrodos de grafito de alta pureza mediante la ignición de una descarga de arco entre ellos en una atmósfera inerte (gas helio). De manera alternativa, el hollín es producido por la ablación láser del grafito o la pirólisis dehidrocarburos aromáticos. Los fullerenos son extraídos del hollín usando un procedimiento de múltiples etapas. Primero, el hollín es disuelto en los disolventes orgánicos apropiados. Este paso lleva a una disolución que contiene más del 75% de C60, así como otros fullerenos. Estas fracciones son separadas usandocromatografía.

Propiedades

Molécula

La estructura del buckminsterfullereno es un Icosaedro truncado con 60 vértices y 32 caras (20 hexágonos y 12 pentágonos donde ningún pentágono comparte un vértice) con un átomo de carbono en los vértices de cada polígono y un enlace a lo largo de cada borde del polígono. El diámetro de Van der Waals de una molécula de C60 es alrededor de 1.01 nanómetros (nm). El diámetro de núcleo a núcleo de una molécula de C60 es alrededor de 0.71 nm. La molécula de C60 tiene dos longitudes de enlace. Los enlaces de anillo 6:6 (entre dos hexágonos) pueden ser considerados "dobles enlaces" y son más cortos que los enlaces 6:5 (entre un hexágono y un pentágono). Su longitud de enlace promedio es 0.14 nm. Cada átomo de carbono en la estructura está enlazado covalentemente con otros 3.

La molécula C60 es extremadamente estable, siendo capaz de resistir altas temperaturas y presiones. La superficie expuesta de la estructura es capaz de reaccionar con otras especies mientras mantiene la geometría esférica. La estructura hueca es también capaz de atrapar átomos y pequeñas moléculas, las cuales no reaccionan con la molécula de fullereno.

El C60 puede sufrir seis reducciones monoelectrónicas reversibles hasta C606-, mientras que la oxidación es irreversible. La primera reducción requiere ~1.0V (Fc/Fc+), indicando que el C60 es un aceptor de electrones. El C60 tiene la tendencia de evitar tener dobles enlaces dentro de los anillos pentagonales lo que produce una pobre deslocalización electrónica, y en la práctica resulta que el C60 no es "superaromático". El C60 se comporta mucho como un alqueno deficiente de electrones y fácilmente reacciona con especies ricas en electrones.

Un átomo de carbono en la molécula C60 puede ser sustituido por un átomo de nitrógeno o boro obteniéndose C59N o C59B respectivamente.

Proyecciones ortogonales

Centrado por Vértice Borde

5-6 Borde

6-6 Cara

Hexágono Cara

Pentágono

Imagen

Simetría

proyectiva [2] [2] [2] [6] [10]

Solubilidad de saturación del C60 (S, mg/mL)

Solvente S

1-cloronaftaleno

...

Descargar como (para miembros actualizados) txt (20 Kb)
Leer 12 páginas más »
Disponible sólo en Clubensayos.com