Combinaciones
estebanO7215 de Abril de 2015
1.990 Palabras (8 Páginas)292 Visitas
G) COMBINACIONES.
Como ya se mencionó anteriormente, una combinación, es un arreglo de elementos en donde no nos interesa el lugar o posición que ocupan los mismos dentro del arreglo. En una combinación nos interesa formar grupos y el contenido de los mismos.
La fórmula para determinar el número de combinaciones es:
nCr = Combinaciones de r objetos tomados de entre n objetos
Donde se observa que,
La expresión anterior nos explica como las combinaciones de r objetos tomados de entre n objetos pueden ser obtenidas a partir de las permutaciones de r objetos tomados de entre n objetos, esto se debe a que como en las combinaciones no nos importa el orden de los objetos, entonces si tenemos las permutaciones de esos objetos al dividirlas entre r!, les estamos quitando el orden y por tanto transformándolas en combinaciones, de otra forma, también si deseamos calcular permutaciones y tenemos las combinaciones, simplemente con multiplicar estas por el r! obtendremos las permutaciones requeridas.
nPr = nCr r!
Y si deseamos r = n entonces;
nCn = n! / (n –n)!n! = n! / 0!n! = 1
¿Qué nos indica lo anterior?
Que cuando se desea formar grupos con la misma cantidad de elementos con que se cuenta solo es posible formar un grupo.
Ejemplos:
1) a. Si se cuenta con 14 alumnos que desean colaborar en una campaña pro limpieza del Tec, cuantos grupos de limpieza podrán formarse si se desea que consten de 5 alumnos cada uno de ellos, b.si entre los 14 alumnos hay 8 mujeres, ¿cuantos de los grupos de limpieza tendrán a 3 mujeres?, c.¿cuántos de los grupos de limpieza contarán con 4 hombres por lo menos?
Solución:
a. n = 14, r = 5
14C5 = 14! / (14 – 5 )!5! = 14! / 9!5!
= 14 x 13 x 12 x 11 x 10 x 9!/ 9!5!
= 2002 grupos
Entre los 2002 grupos de limpieza hay grupos que contienen solo hombres, grupos que contienen solo mujeres y grupos mixtos, con hombres y mujeres.
b. n = 14 (8 mujeres y 6 hombres), r = 5
En este caso nos interesan aquellos grupos que contengan 3 mujeres y 2 hombres
8C3*6C2 = (8! / (8 –3)!3!)*(6! / (6 – 2)!2!)
= (8! / 5!3!)*(6! / 4!2!)
= 8 x7 x 6 x 5 /2!
= 840 grupos con 3 mujeres y 2 hombres, puesto que cada grupo debe constar de 5 personas
c. En este caso nos interesan grupos en donde haya 4 hombres o más
Los grupos de interés son = grupos con 4 hombres + grupos con 5 hombres
= 6C4*8C1 + 6C5*8C0 = 15 x 8 + 6 x 1 = 120 + 6 = 126
2) Para contestar un examen un alumno debe contestar 9 de 12 preguntas, a.¿Cuántas maneras tiene el alumno de seleccionar las 9 preguntas?, b.¿Cuántas maneras tiene si forzosamente debe contestar las 2 primeras preguntas?, c.¿Cuántas maneras tiene si debe contestar una de las 3 primeras preguntas?, d.¿Cuántas maneras tiene si debe contestar como máximo una de las 3 primeras preguntas?
Solución:
a. n = 12, r = 9
12C9 = 12! / (12 – 9)!9!
...