ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Conceptos


Enviado por   •  13 de Abril de 2015  •  1.336 Palabras (6 Páginas)  •  165 Visitas

Página 1 de 6

Hay potenciales eléctricos a través de las membranas de prácticamente todas las células del cuerpo. Además, algunas células, como las células nerviosas y musculares, son capaces de generar impulsos electroquímicos rápidamente cambiantes en sus membranas, y estos impulsos se utilizan para transmitir señales a través de las membranas de los nervios y de los músculos. En otros tipos de células, como las células glandulares, los macrófagos y las células ciliadas, los cambios locales de los potenciales de membrana también activan muchas de las funciones de las células.

la concentración de potasio es grande dentro de la membrana de una fibra nerviosa, pero muy baja fuera de la misma. Consideremos que en este caso la membrana es permeable a los iones potasio, pero no a ningún otro ion. Debido al gran gradiente de concentración de potasio desde el interior hacia el exterior hay una intensa tendencia a que cantidades adicionales de iones potasio difundan hacia fuera a través de la membrana. A medida que lo hacen transportan cargas eléctricas positivas hacia el exterior, generando de esta manera electropositividad fuera de la membrana y electronegatividad en el interior debido a los aniones negativos que permanecen detrás y que no difunden hacia fuera con el potasio. En un plazo de aproximadamente 1 ms la diferencia de potencial entre el interior y el exterior, denominada potencial de difusión, se hace lo suficientemente grande como para bloquear la difusión adicional neta de potasio hacia el exterior, a pesar del elevado gradiente de concentración iónica de potasio.

El nivel del potencial de difusión a través de una membrana que se opone exactamente a la difusión neta de un ion particular a través de la membrana se denomina potencial de Nernst para ese ion. La magnitud de este potencial de Nernst viene determinada por el cociente de las concentraciones de ese ion específico en los dos lados de la membrana. Cuanto mayor es este cociente, mayor es la tendencia del ion a difundir en una dirección y, por tanto, mayor será el potencial de Nernst necesario para impedir la difusión neta adicional.

El potencial de membrana en reposo de las fibras nerviosas grandes cuando no transmiten señales nerviosas es de aproximadamente –90 mV. Es decir, el potencial en el interior de la fibra es 90 mV más negativo que el potencial del líquido extracelular que está en el exterior de la misma. En los siguientes párrafos se explican las propiedades de transporte de la membrana en reposo de los nervios para el sodio y el potasio, así como los factores que determinan el nivel de este potencial en reposo. todas las membranas celulares del cuerpo tienen una potente bomba Na+-K+ que transporta continuamente iones sodio hacia el exterior de la célula e iones potasio hacia el interior, La bomba Na+-K+ también genera grandes gradientes de concentración para el sodio y el potasio a través de la membrana nerviosa en reposo.

Las señales nerviosas se transmiten mediante potenciales de acción que son cambios rápidos del potencial de membrana que se extienden rápidamente a lo largo de la membrana de la fibra nerviosa. Cada potencial de acción comienza con un cambio súbito desde el potencial de membrana negativo en reposo normal hasta un potencial positivo y después termina con un cambio casi igual de rápido de nuevo hacia el potencial negativo. Para conducir una señal nerviosa el potencial de acción se desplaza a lo largo de la fibra nerviosa hasta que llega al extremo de la misma.

Las sucesivas fases del potencial de acción son las siguientes.

Fase de reposo. Este es el potencial de membrana en reposo antes del comienzo del potencial de acción. Se dice que la membrana está «polarizada» durante esta fase debido al potencial de membrana negativo de –90 mV que está presente.

Fase de despolarización. En este momento la membrana se hace súbitamente muy permeable a los iones sodio, lo que permite que un gran número de iones sodio con carga positiva difunda hacia el interior del axón. El estado «polarizado» normal de –90 mV se neutraliza inmediatamente por la entrada de iones sodio cargados positivamente, y el potencial aumenta

...

Descargar como (para miembros actualizados)  txt (8.2 Kb)  
Leer 5 páginas más »
Disponible sólo en Clubensayos.com