ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

DESCRIPCION DE BASE MOLECULAR


Enviado por   •  7 de Febrero de 2014  •  3.290 Palabras (14 Páginas)  •  418 Visitas

Página 1 de 14

Descripción de base molecular de la vida

Sólo 27 elementos de la naturaleza forman parte de los seres vivos. Son los bioelementos o elementos biogénicos

Bioelementos

PRIMARIOS:

• Constituyen el 95 % del peso de cualquier organismo

• C, H, O, N

SECUNDARIOS:

• Constituyen el 4 % del peso de cualquier organismo

• P, S, Ca, Na, K, Cl, I, Mg, Fe

OLIGOELEMENTOS:

• Constituyen el 0,1 % del peso de cualquier organismo

Cu, Zn, Mn, Co, Mo, Ni, Si,

La Base Molecular de la Vida es la Interacción de los 2 ácidos Nucleicos( ADN +ARN), conocida también como Dogma de la Biología Celular y Molecular, el ADN participa en la Transmisión de caracteres hereditarios de los progenitores a hijos, también actúa en la Transcripción del ARNm durante la síntesis proteica, en el Control y Coordinación de todos los procesos celulares, por otra parte, el ARN es un complemento del ADN, participa en la Traducción de la información del ADN en Proteínas celulares, solo el ARNm es codificado en el núcleo por 1 de las cadenas de Nucleótidos del ADN, la información contenida en el ARNm es ejecutada en el citoplasma por el ARNt, ARNr y los ribosomas para la transformación de Aminoácidos en proteínas celulares.

La bioquímica estudia la base molecular de la vida. En los procesos vitales interaccionan un gran número de substancias de alto peso molecular o macromoléculas con compuestos de menor tamaño, dando por resultado un número muy grande de reacciones coordinadas que producen la energía que necesita la célula para vivir, la síntesis de todos los componentes de los organismos vivos y la reproducción celular.

Al conjunto de reacciones que suceden dentro de los seres vivos se le llama metabolismo.

Actualmente se conoce a detalle la estructura tridimensional de las macromoléculas de mayor importancia biológica, los ácidos nucleicos y las proteínas, lo que ha permitido entender a nivel molecular sus funciones biológicas.

Gracias al conocimiento de la estructura de los ácidos nucleicos, se esclarecieron los mecanismos de transmisión de la información genética de generación a generación, y también los mecanismos de expresión de esa información, la cual determina las propiedades y funciones de las células, los tejidos, los órganos y los organismos completos.

Conocer a detalle la estructura de varias proteínas ha sido muy útil en la elucidación de los mecanismos de las reacciones enzimáticas. Prácticamente todas las reacciones que integran el metabolismo son reacciones enzimáticas.

Biología molecular, se ocupa del estudio de la bases moleculares de la vida; es decir, relaciona las estructuras de las biomoléculas con las funciones específicas que desempeñan en la célula y en el organismo.

La estructura del ADN

La presentación del modelo estructural del ADN (ácido desoxirribonucleico) por Francis Harry Compton Crick y Watson en 1953, fue el verdadero inicio de la biología molecular. La importancia de este hecho se debe, por un lado a que es la molécula que transmite la información hereditaria de generación en generación (véase Genética), y por otro a que la propia estructura muestra cómo lo logra. El ADN es una molécula de doble hélice, compuesta por dos hebras complementarias unidas entre sí por puentes entre las bases: adenina (A), guanina (G), citosina (C) y timina (T). La A de una hebra se aparea siempre con la T de la hebra complementaria, y del mismo modo, la G con la C. Durante la replicación o duplicación, las dos hebras simples se separan y cada una de ellas forma una nueva hebra complementaria, incorporando bases, la A se unirá a la T de la hebra molde, la G lo hará con la C y así sucesivamente. De esta manera se obtiene otra molécula de ADN, idéntica a la original y por tanto, el material genético se ha duplicado. Este material incluye toda la información necesaria para el control de las funciones vitales de las células y del organismo. Durante la división celular, las dos células hijas reciben igual dotación genética; de este mismo modo se reparte el material hereditario a la descendencia, cuando se reproduce un organismo.

A partir del ADN se produce ARN y a partir del ARN se producen proteínas

La copia precisa de la información genética contenida en el ADN nos lleva a la cuestión de cómo esta información modela las actividades de la célula. El siguiente paso necesario para la comprensión de este proceso fue el conocimiento de la transcripción, mecanismo mediante el cual, el ADN forma la molécula de ARN correspondiente, en forma de una hebra simple. Tal como ocurre en la replicación del ADN, la información genética se transcribe de forma fiel mediante la adición de bases complementarias. Después, el ARN mensajero (ARNm) se traslada a los orgánulos celulares llamados ribosomas, donde se lleva a cabo la traducción de proteínas. El código genético gobierna la traducción, que se basa en la correspondencia que existe entre 3 bases o triplete de la secuencia del ARN y un aminoácido específico de la secuencia proteica. El triplete ACC provoca la adición de treonina en la secuencia proteica que se está formando, CCC la de prolina y así sucesivamente. Por lo tanto la información contenida en la secuencia lineal de bases del ADN codifica la síntesis de una secuencia lineal de aminoácidos de una proteína. De tal manera, que un cambio en las bases del ADN conlleva un cambio en la proteína correspondiente. Por ejemplo, un cambio de la base A por C en el triplete ACC produciría la adición de prolina en lugar de treonina. Las proteínas son muy específicas, es decir tienen funciones biológicas muy concretas, con lo cual un cambio que afecte a la función que realizan, provocaría una alteración estructural o fisiológica en el organismo. Estas diferencias en la información genética del ADN, son las responsables de las diferencias heredadas entre individuos, tales como el color de ojos o las enfermedades genéticas como la hemofilia. A partir del ADN se sintetiza ARN y a partir del ARN se sintetizan proteínas, éste es el llamado "dogma central de la biología molecular".

QUIMICA DE LA VIDA

Biología molecular, se ocupa del estudio de la bases moleculares de la vida; es decir, relaciona las estructuras de las biomoléculas con las funciones específicas que desempeñan en la célula y en el organismo.

La estructura del ADN

La presentación del modelo estructural del ADN (ácido desoxirribonucleico) por Francis Harry Compton Crick y Watson en 1953, fue el verdadero inicio de la biología molecular. La importancia de este hecho se debe, por un lado a que es la molécula que transmite la información hereditaria de generación en generación (véase Genética), y por otro a que la propia estructura muestra cómo lo logra. El ADN es una molécula de doble hélice, compuesta por dos hebras complementarias unidas entre sí por puentes entre las bases: adenina (A), guanina (G), citosina (C) y timina (T). La A de una hebra se aparea siempre con la T de la hebra complementaria, y del mismo modo, la G con la C. Durante la replicación o duplicación, las dos hebras simples se separan y cada una de ellas forma una nueva hebra complementaria, incorporando bases, la A se unirá a la T de la hebra molde, la G lo hará con la C y así sucesivamente. De esta manera se obtiene otra molécula de ADN, idéntica a la original y por tanto, el material genético se ha duplicado. Este material incluye toda la información necesaria para el control de las funciones vitales de las células y del organismo. Durante la división celular, las dos células hijas reciben igual dotación genética; de este mismo modo se reparte el material hereditario a la descendencia, cuando se reproduce un organismo.

A partir del ADN se produce ARN y a partir del ARN se producen proteínas

La copia precisa de la información genética contenida en el ADN nos lleva a la cuestión de cómo esta información modela las actividades de la célula. El siguiente paso necesario para la comprensión de este proceso fue el conocimiento de la transcripción, mecanismo mediante el cual, el ADN forma la molécula de ARN correspondiente, en forma de una hebra simple. Tal como ocurre en la replicación del ADN, la información genética se transcribe de forma fiel mediante la adición de bases complementarias. Después, el ARN mensajero (ARNm) se traslada a los orgánulos celulares llamados ribosomas, donde se lleva a cabo la traducción de proteínas. El código genético gobierna la traducción, que se basa en la correspondencia que existe entre 3 bases o triplete de la secuencia del ARN y un aminoácido específico de la secuencia proteica. El triplete ACC provoca la adición de treonina en la secuencia proteica que se está formando, CCC la de prolina y así sucesivamente. Por lo tanto la información contenida en la secuencia lineal de bases del ADN codifica la síntesis de una secuencia lineal de aminoácidos de una proteína. De tal manera, que un cambio en las bases del ADN conlleva un cambio en la proteína correspondiente. Por ejemplo, un cambio de la base A por C en el triplete ACC produciría la adición de prolina en lugar de treonina. Las proteínas son muy específicas, es decir tienen funciones biológicas muy concretas, con lo cual un cambio que afecte a la función que realizan, provocaría una alteración estructural o fisiológica en el organismo. Estas diferencias en la información genética del ADN, son las responsables de las diferencias heredadas entre individuos, tales como el color de ojos o las enfermedades genéticas como la hemofilia. A partir del ADN se sintetiza ARN y a partir del ARN se sintetizan proteínas, éste es el llamado "dogma central de la biología molecular".

COMPUESTOS ORGANICOS

Biología molecular, se ocupa del estudio de la bases moleculares de la vida; es decir, relaciona las estructuras de las biomoléculas con las funciones específicas que desempeñan en la célula y en el organismo.

La estructura del ADN

La presentación del modelo estructural del ADN (ácido desoxirribonucleico) por Francis Harry Compton Crick y Watson en 1953, fue el verdadero inicio de la biología molecular. La importancia de este hecho se debe, por un lado a que es la molécula que transmite la información hereditaria de generación en generación (véase Genética), y por otro a que la propia estructura muestra cómo lo logra. El ADN es una molécula de doble hélice, compuesta por dos hebras complementarias unidas entre sí por puentes entre las bases: adenina (A), guanina (G), citosina (C) y timina (T). La A de una hebra se aparea siempre con la T de la hebra complementaria, y del mismo modo, la G con la C. Durante la replicación o duplicación, las dos hebras simples se separan y cada una de ellas forma una nueva hebra complementaria, incorporando bases, la A se unirá a la T de la hebra molde, la G lo hará con la C y así sucesivamente. De esta manera se obtiene otra molécula de ADN, idéntica a la original y por tanto, el material genético se ha duplicado. Este material incluye toda la información necesaria para el control de las funciones vitales de las células y del organismo. Durante la división celular, las dos células hijas reciben igual dotación genética; de este mismo modo se reparte el material hereditario a la descendencia, cuando se reproduce un organismo.

A partir del ADN se produce ARN y a partir del ARN se producen proteínas

La copia precisa de la información genética contenida en el ADN nos lleva a la cuestión de cómo esta información modela las actividades de la célula. El siguiente paso necesario para la comprensión de este proceso fue el conocimiento de la transcripción, mecanismo mediante el cual, el ADN forma la molécula de ARN correspondiente, en forma de una hebra simple. Tal como ocurre en la replicación del ADN, la información genética se transcribe de forma fiel mediante la adición de bases complementarias. Después, el ARN mensajero (ARNm) se traslada a los orgánulos celulares llamados ribosomas, donde se lleva a cabo la traducción de proteínas. El código genético gobierna la traducción, que se basa en la correspondencia que existe entre 3 bases o triplete de la secuencia del ARN y un aminoácido específico de la secuencia proteica. El triplete ACC provoca la adición de treonina en la secuencia proteica que se está formando, CCC la de prolina y así sucesivamente. Por lo tanto la información contenida en la secuencia lineal de bases del ADN codifica la síntesis de una secuencia lineal de aminoácidos de una proteína. De tal manera, que un cambio en las bases del ADN conlleva un cambio en la proteína correspondiente. Por ejemplo, un cambio de la base A por C en el triplete ACC produciría la adición de prolina en lugar de treonina. Las proteínas son muy específicas, es decir tienen funciones biológicas muy concretas, con lo cual un cambio que afecte a la función que realizan, provocaría una alteración estructural o fisiológica en el organismo. Estas diferencias en la información genética del ADN, son las responsables de las diferencias heredadas entre individuos, tales como el color de ojos o las enfermedades genéticas como la hemofilia. A partir del ADN se sintetiza ARN y a partir del ARN se sintetizan proteínas, éste es el llamado "dogma central de la biología molecular".

Definición de Compuestos Orgánicos:

Los compuestos orgánicos son todas las especies químicas que en su composición contienen el elemento carbono y, usualmente, elementos tales como el Oxígeno (O), Hidrógeno (H), Fósforo (F), Cloro (CL), Yodo (I) y nitrógeno (N), con la excepción del anhídrido carbónico, los carbonatos y los cianuros.

Características de los Compuestos Orgánicos:

• Son Combustibles

• Poco Densos

• Electro conductores

• Poco Hidrosolubles

• Pueden ser de origen natural u origen sintético

• Tienen carbono

• Casi siempre tienen hidrogeno

• Componen la materia viva

• Su enlace mas fuerte en covalente

• Presentan isomería

• Existen mas de 4 millones

• Presentan concatenación

Diferencias entre Compuestos Orgánicos y Compuestos Inorgánicos

• No existe diferencia alguna entre estos dos conceptos, de hecho, se da el nombre de química orgánica a la parte de la química que estudia los compuestos del carbono, salvo el Sulfuro de Carbono, los Óxidos de Carbono y derivados.

• Ésta denominación viene de la creencia antigua y errónea de que sólo los seres vivos eran capaces de sintetizar los compuestos del carbono, sin embargo, aunque la diferencia clásica entre compuestos orgánicos e inorgánicos ha desaparecido, la expresión química orgánica subsiste enfatizada por varias razones, comenzando por el que todos los compuestos considerados orgánicos contengan carbono o que este elemento forma parte de un número casi ilimitado de combinaciones debido a la extraordinaria tendencia de sus átomos a unirse entre sí.

• La química orgánica moderna se ocupa de los compuestos orgánicos de carbono de origen natural y también de los obtenidos en el laboratorio como algunos fármacos, alimentos, productos petroquímicos y carburantes.

• Diferencias entre los compuestos orgánicos e inorgánicos en sus diferentes propiedades:

• Los compuestos orgánicos ofrecen una serie de características que los distinguen de los compuestos inorgánicos, de manera general se puede afirmar que los compuestos inorgánicos son en su mayoría de carácter iónico, solubles sobre todo en agua y con altos puntos de ebullición y fusión; en tanto, en los cuerpos orgánicos predomina el carácter covalente, sus puntos de ebullición y fusión son bajos, se disuelven en disolventes orgánicos no polares (cómo éter, alcohol, cloroformo y benceno), son generalmente líquidos volátiles o sólidos y sus densidades se aproximan a la unidad.

• Los compuestos inorgánicos también se diferencian de los orgánicos en la forma como reaccionan, las reacciones inorgánicas son casi siempre instantáneas, iónicas y sencillas, rápidas y con un alto rendimiento cuantitativo, en tanto las reacciones orgánicas son no iónicas, complejas y lentas, y de rendimiento limitado, realizándose generalmente con el auxilio de elevadas temperaturas y el empleo de catalizadores.

Diferenciación celular

La diferenciación celular es el proceso, en virtud del cual, las células de un linaje celular concreto (el linaje celular se determina en el momento de la formación del embrión) sufren modificaciones en su expresión génica, para adquirir la morfología y las funciones de un tipo celular específico y diferente al resto de tipos celulares del organismo.1

Cualquier célula que presente capacidad de diferenciación es lo que se denomina célula madre. Éstas pueden clasificarse según su capacidad de diferenciación en totipotentes, pluripotentes, multipotentes y unipotentes. En los mamíferos, solo el cigoto y las células embrionarias jóvenes son totipotentes, mientras que en las plantas y hongos, muchas células son totipotentes. Los últimos avances científicos están consiguiendo inducir células animales diferenciadas a ser totipotentes.

Célula eucariota

Saltar a: navegación, búsqueda

Se denominan como eucariotas a todas las células con un núcleo celular delimitado dentro de una doble capa lipídica: la envoltura nuclear, además que tienen su material hereditario, fundamentalmente su información genética.

Las células eucariotas son las que tienen núcleo definido (poseen núcleo verdadero) gracias a una membrana nuclear, al contrario que las procariotas que carecen de dicha membrana nuclear, por lo que el material genético se encuentra disperso en ellas (en su citoplasma), por lo cual es perceptible solo al microscopio electrónico. A los organismos formados por células eucariotas se les denomina eucariontes.

La alternativa a la organización eucariótica de la célula la ofrece la llamada célula procariota. En estas células el material hereditario se encuentra en una región específica denominada nucleoide, no aislada por membranas, en el seno del citoplasma. Las células eucariotas no cuentan con un compartimento alrededor de la membrana plasmática (periplasma), como el que tienen las células procariotas.

El paso de procariotas a eucariotas significó el gran salto en complejidad de la vida y uno de los más importantes de su evolución.1 Sin este paso, sin la complejidad que adquirieron las células eucariotas no habrían sido posibles ulteriores pasos como la aparición de los seres pluricelulares. La vida, probablemente, se habría limitado a constituirse en un conglomerado de bacterias. De hecho, los cinco reinos restantes proceden de ese salto cualitativo. El éxito de estas células eucariotas posibilitó las posteriores radiaciones adaptativas de la vida que han desembocado en la gran variedad de especies que existe en la actualidad.

Estructura celular de una bacteria, típica célula procariota.

Se llama procariota a la células sin núcleo celular definido, es decir, cuyo material genético se encuentra disperso en el citoplasma, reunido en una zona denominada nucleoide.1 Por el contrario, las células que sí tienen un núcleo diferenciado del citoplasma, se llaman eucariotas, es decir aquellas cuyo ADN se encuentra dentro de un compartimiento separado del resto de la célula.

Además, el término procariota hace referencia a los organismos pertenecientes al imperio Prokaryota, cuyo concepto coincide con el reino Monera de las clasificaciones de Herbert Copeland o Robert Whittaker que, aunque anteriores, continúan siendo aún populares.

Casi sin excepción los organismos basados en células procariotas son unicelulares (organismos consistentes en una sola célula).

Se cree que todos los organismos que existen actualmente derivan de una forma unicelular procariota (LUCA). Existe una teoría avanzada, la Endosimbiosis seriada, que considera que a lo largo de un lento proceso evolutivo, hace unos 1500 millones de años, los procariontes derivaron en seres más complejos por asociación simbiótica: los eucariontes.

...

Descargar como  txt (20 Kb)  
Leer 13 páginas más »
txt