ESTRUCTURAS PRINCIPALES DEL AVION
brunosanches24 de Febrero de 2013
8.993 Palabras (36 Páginas)589 Visitas
ESTRUCTURAS
PRINCIPALES DEL
AVION
1
E S T R U C T U R A S P R I N C I P A L E S D E L A V I Ó N
Fuselaje:
DEFINICIÓN: El fuselaje es el cuerpo estructural del avión, de figura
fusiforme, que aloja a los posibles pasajeros y carga, junto con los sistemas y
equipos que dirigen el avión. Se considera la parte central por que a ella se acoplan
directamente o indirectamente el resto de partes como las superficies
aerodinámicas, el tren de aterrizaje y el grupo motopropulsor. En aviones
monomotores el fuselaje contiene al grupo motopropulsor y la cabina del piloto;
sirve también de soporte a las alas y estabilizadores; y lleva el tren de aterrizaje.
En aviones multimotores no contiene al grupo motopropulsor: los motores van
dispuestos en barquillas o mástiles, sobre o bajo las alas, o en la cola.
En el caso del ATR el fuselaje
se une de forma directa a las
alas y a la cola, mientras que
el grupo motopropulsor se une
al fuselaje de forma indirecta
a través de las alas.
FORMA: Su forma obedece a una solución de compromiso entre una
geometría suave con poca resistencia aerodinámica y ciertas necesidades de
volumen o capacidad para poder cumplir con sus objetivos. El fuselaje variará
entonces dependiendo de las tareas que el avión va a desempeñar. Mientras que un
avión comercial buscará un promedio entre volumen para carga y PAX, y
aerodinámica; un caza militar buscará un fuselaje completamente aerodinámico,
que le permita realizar maniobras a altas velocidades sin sufrir deterioros
estructurales.
En aviones comerciales la sección recta del fuselaje tenderá a ser circular para
aliviar las cargas de presurización de la cabina, ya que de esta forma la presión se
ESTRUCTURAS
PRINCIPALES DEL
AVION
2
reparte de igual manera por todo el interior. Gran parte del volumen estará
dedicado a la cabina de pasajeros cuya disposición variará según diversos factores
(duración del vuelo, política de la aerolínea, salidas de emergencia...). La mercancía
o carga se suele albergar en las bodegas del avión situadas en la parte inferior del
avión. En aviones cargueros exclusivamente la forma del fuselaje dependerá de la
carga que se vaya a transportar y se acomodará en función de la mercancía y su
salida/entrada de la aeronave, disponiendo en el fuselaje de puertas o accesos
especiales para la carga y descarga.
En el caso del airbus
“beluga” dedicado a la
carga, su fuselaje adquiere
esta forma tan peculiar para
poder dar cabida a grandes
piezas, como las alas del
A320.
Como conclusión podemos decir que en la construcción del fuselaje intervienen
numerosos factores de diseño, aerodinámica, cargas estructurales y funciones de la
aeroave.
Típica disposición del interior de un fuselaje en aviones comerciales,
de forma circular; quizás no sea la más aerodinámica pero si la más
funcional para el transporte de pasajeros y carga. Este caso es el del
moderno embraer 170, que puede albergar 70 pasajeros, en filas de
dos asientos para un rápido embarque y desembarque. La altura de
la cabina es de 6 pies y 7 pulgadas, y la anchura de 9 pies.
TIPOS DE CONSTRUCCIÓN: Los fuselajes se han ido construyendo de
diversas maneras a lo largo de la historia dependiendo de la función de la aeronave
ESTRUCTURAS
PRINCIPALES DEL
AVION
3
y de los medios técnicos de los que se disponía. El primer tipo de fuselaje consistía
en un entramado de varillas metálicas que conformaban la estructura principal del
avión, la cual era cubierta posteriormente con planchas de madera o lona. Era el
fuselaje tubular o reticular, el primero en usarse; consecutivamente fueron
apareciendo otras formas de concebir el cuerpo del avión según las necesidades de
la época, el fuselaje monocasco y el semimonocasco.
Fuselaje reticular o tubular: Se fabrica a partir de tubos de acero o de
madera, soldados, que van formando la estructura principal del avión en forma de
huso. En esta estructura encontramos las cuadernas que son los elementos más
importantes que conforman y dan rigidez a la estructura; los largueros que unen
las cuadernas y que son largos tubos horizontales que recorren gran parte del
avión; y las diagonales, que dan rigidez al conjunto largueros-cuadernas.
Esa estructura de tubos se cubre más tarde con lona, o en otras ocasiones con
planchas metálicas o de madera, de tal forma que el fuselaje adquiere
externamente una forma aerodinámica y uniforme. Este recubrimiento no añade
resistencia estructural sino que son las cuadernas, largueros y diagonales los que
soportan todas las cargas en vuelo y tierra
Aunque en un inicio era un forma barata, segura y sencilla de fabricar el fuselaje,
las exigencias de la industria aeronáutica pronto cambiaron. Los nuevos motores
que hacían que el avión pudiese ir más rápido y alto, la demanda de aeronaves
para la guerra resistentes a grandes impactos, y el afán de conquistar el Atlántico
Norte con hidroaviones, hizo que este tipo de construcción se quedara obsoleta, ya
que no aguantaba los impactos, ni las cargas estructurales a las que le sometían los
nuevos motores... y gracias al desarrollo de hidroaviones a partir de cascos de
barcos se empezó a utilizar un nuevo tipo de construcción: el fuselaje monocasco.
Hoy en día, todavía hay aviones de fuselaje reticular en activo, tanto ligeros
como pesados aunque rara vez se construye ya aviación ligera mediante esta
manera.
ESTRUCTURAS
PRINCIPALES DEL
AVION
4
La Piper Cub es un claro ejemplo de fuselaje reticular o tubular.
Fuselaje monocasco: El fuselaje monocasco, proveniente de la industria naval,
fue utilizado primero en hidroaviones de madera, pero dadas sus ventajas de
resistencia fue pronto adoptado para muchos tipos de aeronaves. Este tipo de
estructura monocasco o “todo de una pieza” es un tubo en cuyo interior se sitúan a
ESTRUCTURAS
PRINCIPALES DEL
AVION
5
intervalos, una serie de armaduras verticales llamadas cuadernas, que dan forma y
rigidez al tubo. El tubo del fuselaje, o el revestimiento exterior sí forma parte
integral de la estructura soportando y transmitiendo los esfuerzos a los que está
sometido el avión. Para que este revestimiento soporte estas cargas debe ser
resistente y por ello está fabricado en chapa metálica, que debe ser de cierto
espesor para aguantar mejor. A mayor espesor, mayor peso, y es que el fuselaje
monocasco, aun siendo más resistente, es más pesado. Por ello cayó en desuso.
Hoy en día se emplea en misiles, aviones-blanco e hidroaviones que no precisen de
demasiado espesor de chapa.
ESTRUCTURAS
PRINCIPALES DEL
AVION
6
Fuselaje semimonocasco: El más usado hoy en día, resolviendo el problema
del peso y espesor del anterior modelo. La introducción de piezas de refuerzo en el
interior permitió aliviar el revestimiento pudiendo ser más fino. Las cuadernas se
unen mediante largueros y larguerillos que recorren el avión longitudinalmente. Los
largueros y larguerillos permiten el adelgazamiento de la chapa de revestimiento.
Todo esto forma una compleja malla de cuadernas, larguerillos, largueros y
revestimiento, unida mediante pernos, tornillos, remaches y adhesivos.
Fuselaje semimonocasco del Boeing 737 con los compartimentos de equipaje de mano instalados.
PRESURIZACIÓN: A altitudes altas, la densidad del aire es menor y en el
volumen de aire que podríamos respirar no habría suficiente oxígeno. Por ello es
necesario sellar el fuselaje, y contener en su interior, un aire comprimido y denso
respecto del exterior para mantener los niveles de oxígeno necesarios. Sin embargo
el aire siempre tiende a igualar las presiones; por lo tanto, el aire de cabina
empujará y ejercerá una presión en las paredes para poder “escapar”, expandirse,
e igualarse al aire exterior, a menor presión. Por ello, las paredes del fuselaje
deben aguantar ese esfuerzo que está ejerciendo el aire (las cargas de
presurización). La forma circular, como antes habíamos citado, alivia ese esfuerzo
porque reparte esa presión (que es fuerza por superficie) por toda la superficie,
ESTRUCTURAS
PRINCIPALES DEL
AVION
7
disminuyendo la fuerza que ejerce el aire; y los nuevos materiales (composites) y
el fuselaje semimonocasco le dan resistencia al fuselaje.
Para que se dé una presurización correcta es necesario que el fuselaje esté
completamente sellado como decíamos antes, y para ello se emplean tres métodos
de construcción. El sellado de todas las uniones con materiales blandos que además
no permitan el paso de la humedad (corrosión); el empleo de arandelas de goma
en todos los orificios de los tabiques presurizados; y juntas neumáticas inflables en
los marcos de grandes aberturas
...