ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

El principal objetivo de las series de tiempo

mariogarciaTrabajo5 de Abril de 2013

4.716 Palabras (19 Páginas)2.686 Visitas

Página 1 de 19

SERIES DE TIEMPO EMPLEANDO EXCEL Y GRAPH

1) DEFINICIÓN

Las series de tiempo llamadas también series cronológicas o series históricas son un conjunto de datos numéricos que se obtienen en períodos regulares y específicos a través del tiempo, los tiempos pueden ser en años, meses, semanas, días o otra unidad adecuada al problema que se esté trabajando. Ejemplos de series de tiempo son: Ventas mensuales de un producto en una empresa, producción total anual de petróleo en Ecuador durante un cierto número años o las temperaturas anunciadas cada hora por el meteorólogo para un aeropuerto.

Matemáticamente, una serie de tiempo se define por los valores Y1, Y2, Y3,…….de una variable Y (ventas mensuales, producción total, etc.) en tiempos t1, t3, t3……….. Si se reemplaza a X por la variable tiempo, estas series se definen como distribuciones de pares ordenados (X,Y) en el plano cartesiano, siendo Y una función de X; esto se denota por:

Y = f(t)→Y= f(X)

El principal objetivo de las series de tiempo es hacer proyecciones o pronósticos sobre una actividad futura, suponiendo estables las condiciones y variaciones registradas hasta la fecha, lo cual permite planear y tomar decisiones a corto o largo plazo. Después, con base en esa situación ideal, que supone que los factores que influyeron en la serie en el pasado lo continuarán haciendo en el futuro, se analizan las tendencias pasadas y el comportamiento de las actividades bajo la influencia de ellas; por ejemplo, en la proyección de ventas de un producto o de un servicio de una empresa se calculan los posibles precios, la reacción del consumidor, la influencia de la competencia, etc.

2) MOVIMIENTOS O COMPONENTES

El modelo clásico o de descomposición, considera que los datos de series de tiempo están compuestas de los siguientes cuatro patrones básicos:

2.1) TENDENCIA SECULAR

La tendencia secular o simplemente tendencia, son movimientos o variaciones continuas de la variable de modo uniforme y suave, por encima o por debajo, que se observan en el largo plazo durante un período de longitud prolongada. Representan el comportamiento predominante o dirección general de la serie de tiempo como ascendente o descendente. La gráfica de la tendencia suele ser una curva suave y aun una línea recta que muestra la tendencia de las variaciones. Ejemplos de tendencia secular son las ventas, exportaciones, producción y el empleo.

La siguiente gráfica muestra la tendencia de exportaciones de la Empresa D & M en período 2000-2009. Aunque los datos muestran ciertas variaciones están por encima y por debajo de la recta de tendencia, la tendencia secular es ascendente.

Empleando Excel:

2.2) MOVIMIENTOS ESTACIONALES

Representa un movimiento periódico que se producen en forma similar cada año por la misma época, en correlación con los meses o con las estaciones del año y aun con determinadas fechas. Si los sucesos no se repiten anualmente, los datos deben recolectarse trimestral, mensual o incluso semanalmente. Ejemplos de movimientos estacionales son la variación de precios de ciertos productos, incremento de ventas de juguetes y disminución de ventas de útiles Navidad, incremento de ventas de flores por el día del amor y la amistad, etc.

A continuación se muestra un ejemplo de gráfica que representa este tipo de movimientos estacionales:

2.3) MOVIMIENTOS CÍCLICOS

Son variaciones hacia arriba y hacia abajo de la tendencia que se presentan cada cierto número de intervalos, en forma periódica de manera ondular a modo de oscilaciones más o menos regulares durante un período relativamente prolongado, que por lo general abarca tres o más años de duración. La producción, empleo, promedio industrial, etc. son ejemplos de este tipo de movimientos.

A continuación se muestra un ejemplo de gráfica que representa este tipo de movimientos cíclicos:

2.4) MOVIMIENTOS IRREGULARES O ALEATORIOS

Son aquellas variaciones producidas por sucesos de ocurrencia imprevisible o accidental que producen movimientos sin un patrón discernible; así por ejemplo, las exportaciones de una empresa pueden ser afectadas por sucesos inusuales no previsibles tales como huelgas, guerras, terremotos, inundaciones, etc. Estas variaciones irregulares son de corta duración y de magnitud muy variable.

A continuación se muestra un ejemplo de gráfica que representa este tipo de movimientos irregulares:

TAREA DE INTERAPRENDIZAJE

1) Realice un organizador gráfico sobre las series de tiempo.

2) Elabore empleando Excel las gráficas de los ejemplos presentados en los movimientos estacionales, cíclicos e irregulares.

3) Cree y elabore una gráfica que represente a cada uno de los movimientos de las series de tiempo de manera manual y empleando Excel.

3) MODELOS DE SERIES DE TIEMPO

Son expresiones matemáticas de relación entre los movimientos de tendencia secular (T), movimientos cíclicos (C), movimientos estacionales (E) y movimientos irregulares (I) que generan la variable Y. Hay dos modelos para la definición de Y, los cuales son:

3.1) MODELO MULTIPLICATIVO

En el que Y queda definida por el producto de las variaciones.

Y = T·C·E·I

3.2) MODELO ADITIVO

En el que Y queda definida por la suma de las variaciones.

Y = T + C + E + I

En el modelo multiplicativo, las variaciones se expresan en términos relativos o porcentuales de la tendencia, en tanto que en el modelo aditivo las variaciones se expresan como residuos en las mismas unidades originales. El modelo aditivo sufre el supuesto irreal de que los movimientos o componentes son independientes uno de otro, algo que difícilmente se da en el caso de la vida real. El modelo multiplicativo supone que los movimientos o componentes interactúan entre sí y no se mueven independientemente, por lo que este modelo es más utilizado que el aditivo. Sin embargo, el criterio fundamental que se debe seguir en el caso de una situación dada es emplear el modelo que mejor se ajuste a los datos.

4) MÉTODOS DE SUAVIZAMIENTO Y PRONÓSTICO

Estos métodos eliminan las fluctuaciones aleatorias de la serie de tiempo, proporcionando datos menos distorsionados del comportamiento real de misma.

4.1) MÉTODO DE LOS PROMEDIOS MÓVILES

El movimiento medio de orden N de una serie de valores Y1, Y2, Y3,... Yn se define por la sucesión de valores correspondientes a las medias aritméticas:

Por ejemplo: Dados los valores 4, 6, 8, 10, 12 tendríamos para el movimiento medio de orden 2

O sea los valores 5; 7; 9; 11

Para el movimiento medio de orden 3 se tiene la serie

O sea los valores 6; 8; 10

Para el movimiento de orden 4

O sea los valores 7, 12

Nota:

Utilizando adecuadamente estos movimientos medios se eliminan los movimientos o variaciones estacionales, cíclicas e irregulares, quedando sólo el movimiento de tendencia. Este método presenta el inconveniente de que se pierden datos iniciales y finales de la serie original. También se puede observar que a medida que N crece, la cantidad de nuevos datos se reduce.

Si se emplean medias aritméticas ponderadas en el método de los promedios móviles, el método toma de nombre Promedios Móviles Ponderados de Orden N.

Ejemplo ilustrativo

Con los siguientes datos acerca de la ventas en miles de dólares de la Empresa D & M durante los últimos 3 años tomados en períodos de trimestres:

Trimestre

Ventas

1

12

2

16

3

20

4

34

5

23

6

19

7

20

8

35

9

11

10

19

11

24

12

36

1) Suavizar los datos empleando el método de los promedios móviles de orden 3 (longitud de 3 períodos).

2) Pronosticar las ventas para el trimestre número 13.

3) Suponga que para el Gerente de Ventas la última venta realizada es el doble de importante que la penúltima, y la antepenúltima venta tiene la mitad de importancia que la penúltima. Realizar el pronóstico de ventas para el trimestre número 13 empleando el método de los promedios móviles ponderados de orden 3.

4) Elaborar un gráfico en el que consten las ventas y los promedios móviles (ventas suavizadas).

Solución:

1) El cálculo de los promedios móviles de orden 3 se presentan en la siguiente tabla:

Trimestre

Ventas

Pronóstico (Promedios móviles)

1

12

2

16

(12+16+20)/3 = 16,00

3

20

(16+20+34)/3 = 23,33

4

34

(20+34+23)/3 = 25,67

5

23

(34+23+19)/3 = 25,33

6

19

(23+19+20)/3 = 20,67

7

20

(19+20+35)/3 = 24,67

8

35

(20+35+11)/3 = 22,00

9

11

(35+11+19)/3 = 21,67

10

19

(11+19+24)/3 = 18,00

11

24

(19+24+36)/3 = 26,33

12

36

Empleando Excel se muestra en la siguiente figura:

2) El último valor del promedio móvil, que en este ejemplo es 26,33, representa el pronóstico de las ventas para el trimestre número 13, y teóricamente para todo trimestre futuro.

3) Para resolver lo planteado se toma en cuenta las 3 últimas ventas con sus respectivos pesos o ponderaciones. Estos datos se presentan en la siguiente tabla:

Trimestre

Ventas

Pesos (w)

10

19

0,5

11

...

Descargar como (para miembros actualizados) txt (36 Kb)
Leer 18 páginas más »
Disponible sólo en Clubensayos.com