ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

La Trigonometria

putiboss4 de Febrero de 2015

574 Palabras (3 Páginas)215 Visitas

Página 1 de 3

La trigonometría.

Es el estudio de las razones trigonométricas: seno, coseno; tangente, cotangente; secante y cosecante. Interviene directa o indirectamente en las demás ramas de la matemática y se aplica en todos aquellos ámbitos donde se requieren medidas de precisión. La trigonometría se aplica a otras ramas de la geometría, como es el caso del estudio de las esferas en la geometría del espacio.

Teorema de Pitágoras.

El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los catetos (los dos lados menores del triángulo, los que conforman el ángulo recto).

En todo triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.

Ley del seno.

En trigonometría, el teorema del seno o ley de senos, es una relación de proporcionalidad entre las longitudes de los lados de un triángulo y los senos de los ángulos respectivamente opuestos.

Usualmente se presenta de la siguiente forma:

Teorema del seno

Si en un triángulo ABC, las medidas de los lados opuestos a los ángulos A, B y C son respectivamente a, b, c, entonces:

Ley del Coseno.

El teorema del coseno es una generalización del teorema de Pitágoras en los triángulos rectángulos que se utiliza, normalmente, en trigonometría.

El teorema relaciona un lado de un triángulo cualquiera con los otros dos y con el coseno del ángulo formado por estos dos lados:

Teorema del coseno

Dado un triángulo ABC, siendo α, β, γ, los ángulos, y a, b, c, los lados respectivamente opuestos a estos ángulos entonces:

Teorema de la Tangente.

El teorema de la tangente es una fórmula que relaciona las longitudes de los tres lados de un triángulo y las tangentes de sus ángulos.

Las longitudes de los tres lados del triángulo, y α, β, y γ son los ángulos opuestos a estos tres lados respectivamente. El teorema de la tangente establece que:

Aunque el teorema de la tangente no es tan conocido como el teorema del seno o el teorema del coseno, es exactamente igual de útil, y se puede utilizar en cualquiera de los casos donde se conocen dos lados y un ángulo o cuando se conocen dos ángulos y un lado.

Funciones Trigométricas.

Conceptos Básicos: Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triángulo rectángulo asociado a sus ángulos. Las funciones trigonométricas son funciones cuyos valores son extensiones del concepto de razón trigonométrica en un triángulo rectángulo trazado en una circunferencia unitaria (de radio unidad). Definiciones más modernas las describen como series infinitas o como la solución de ciertas ecuaciones diferenciales, permitiendo su extensión a valores positivos y negativos, e incluso a números complejos.

Existen seis funciones trigonométricas básicas. Las últimas cuatro, se definen en relación de las dos primeras funciones, aunque se pueden definir geométricamente o por medio de sus relaciones. Algunas funciones fueron comunes antiguamente, y aparecen en las primeras tablas, pero no se utilizan actualmente; por ejemplo el verseno (1 − cos θ) y la exsecante (sec θ − 1)

Las funciones trigonométricas son las funciones establecidas con el fin de extender la definición de las razones trigonométricas a todos los números reales y complejos.

Las funciones trigonométricas son de gran importancia en física, astronomía, cartografía, náutica, telecomunicaciones, la representación de fenómenos periódicos,

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com