ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

La varianza (S2 ó δ2 ):

xxxhugoxxxTesis2 de Diciembre de 2012

2.059 Palabras (9 Páginas)506 Visitas

Página 1 de 9

LA VARIANZA (S2 ó δ2 ):

La varianza es una medida de dispersión relativa a algún punto de referencia. Ese punto de referencia es la media aritmética de la distribución. Más específicamente, la varianza es una medida de que tan cerca, o que tan lejos están los diferentes valores de su propia media aritmética. Cuando más lejos están las Xi de su propia media aritmética, mayor es la varianza; cuando más cerca estén las Xi a su media menos es la varianza. Y se define y expresa matemáticamente de la siguiente manera:

La varianza para datos no agrupados

Dado un conjunto de observaciones, tales como X1, X2, … , Xn, la varianza denotada usualmente por la letra minúscula griega δ (sigma) elevada al cuadrado (δ2)y en otros casos S2 según otros analistas, se define como: el cuadrado medio de las desviaciones con respecto a su media aritmética"

Matemáticamente, se expresa como:

Ejemplo:

Se tienen las edades de cinco estudiantes universitarios de Ier año, a saber: 18,23, 25, 27, y 34. Al calcular la media aritmética (promedio de las edades, se obtuvo 25.4 años, encontrar la varianza de las edades de estos estudiantes:

Para calcular se utiliza una tabla estadística de trabajo de la siguiente manera:

Xi

( Xi - )

( Xi - )2

18

(18 – 25.5)=-7.4

(-7.4)2=54.76

23

(23 – 25.5)=-2.4

(-2.4)2= 5.76

25

(25 – 25.5)=-0.4

(-0.4)2= 0.16

27

(27 – 25.5)= 1.6

( 1.64)2= 2.16

34

(34 – 25.5)= 8.6

( 8.6)2 =73.96

Total

xxxx

137.20

Respuesta: la varianza de las edades es de 27.4 años

La varianza para datos agrupados

Si en una tabla de distribución de frecuencias. Los puntos medios de las clases son X1, X2, … , Xn; y las frecuencias de las clases f1, f2, … , fn; la varianza se calcula así:

Σ(Xi-)2f1

δ2 = ----------------

Σfi

Sin embargo la formula anterior tiene algún inconveniente para su uso en la practica, sobre todo cuando se trabaja con números decimales o cuando la media aritmética es un número entero. Asimismo cuando se trabaja con máquinas calculadoras, La tarea de computar la varianza se simplifica utilizando la formula de computación que se da a continuación:

ΣXi2fi - [(ΣXifi)2/N]

δ2 = ----------------------------

N donde N=Σfi

Ejemplo:

Se tienen los datos de una muestra de 30 cuentas por cobrar de la tienda Cabrera’s y Asociados dispuestos en una tabla de distribución de frecuencias, a partir de los cuales se deberá calcular la varianza, para lo cual se construye la siguiente tabla estadística de trabajo, si se calculó anteriormente la media aritmética y se fijó en 43.458 (ver ejemplo del calculo en "media aritmética para datos agrupados) de la siguiente manera

clases

Punto medios

Xi

fi

Xi2

Xifi

X2fi

7.420 – 21.835

14.628

10

213.978

146.280

2,139.780

21.835 – 36.250

29.043

4

843,496

116.172

3,373.984

36.250 – 50.665

43.458

5

1,888.598

217.270

9,442.990

50.665 – 65.080

57.873

3

3,349.284

173.619

10,047.852

65.080 – 79.495

72.288

3

5,225.555

216.864

15,676.665

79.495 – 93.910

86.703

5

7,533.025

433.965

37,665.125

Total

XXX

30

19,053.936

1,304.190

78,346.396

= 21,649.344 / 30 = 721.645

Respuesta: la varianza de las cuentas por cobrar es igual B/.721.645

•Propiedades de la varianza :

•s siempre un valor no negativo, que puede ser igual o distinta de 0. Será 0 solamente cuando Xi=

•La varianza es la medida de dispersión cuadrática optima por ser la menor de todas.

•Si a todos los valores de la variable se le suma una constante la varianza no se modifica. Veámoslo:

Si a xi le sumamos una constante xi’ = xi + k tendremos (sabiendo que )

•Si todos los valores de la variable se multiplican por una constante la varianza queda multiplicada por el cuadrado de dicha constante. Veámoslo:

Si a xi’ = xi · k tendremos (sabiendo que )

•Si en una distribución obtenemos una serie de subconjuntos disjuntos, la varianza de la distribución inicial se relaciona con la varianza de cada uno de los subconjuntos mediante la expresión

Siendo

Ni è el nº de elementos del subconjunto (i)

S2i è la varianza del subconjunto (i)

1.3.- LA DESVIACIÓN ESTÁNDAR (S ó δ)

Es una medida de la cantidad típica en la que los valores del conjunto de datos difieren de la media. Es la medida de dispersión más utilizada, se le llama también desviación típica. La desviación estándar siempre se calcula con respecto a la media y es un mínimo cuando se estima con respecto a este valor.

Se calcula de forma sencilla, si se conoce la varianza, por cuanto que es la raíz cuadrada positiva de esta. A la desviación se le representa por la letra minúscula griega "sigma" ( δ ) ó por la letra S mayúscula, según otros analistas.

Cálculo de la Desviación Estándar

δ = √δ2 ó S = √S2

Ejemplo:

Del calculo de la varianza de las edades de cinco estudiantes universitarios de primer año se obtuvo δ2=27.44, como la desviación estándar es la raíz cuadrada positiva, entonces δ = √27.44 = 5.29 años.

Igual procedimiento se aplica para encontrar le desviación estándar de las cuentas por cobrar de la Tienda Cabrera’s y Asociados, recordemos que la varianza obtenida fue de 721.645, luego entonces la desviación estándar es igual a δ =√721.645 = 26.86 balboas.

•Propiedades de la Desviación Estándar

A su vez la desviación estándar, también tiene una serie de propiedades que se deducen fácilmente de las de la varianza (ya que la desviación típica es la raíz cuadrada positiva de la varianza):

•La desviación estándar es siempre un valor no negativo S será siempre ³ 0 por definición. Cuando S = 0 è X = xi (para todo i).

•Es la medida de dispersión óptima por ser la más pequeña.

•La desviación estándar toma en cuenta las desviaciones de todos los valores de la variable

•Si a todos los valores de la variable se le suma una misma constante la desviación estándar no varía.

•Si a todos los valores de la variable se multiplican por una misma constante, la desviación estándar queda multiplicada por el valor absoluto de dicha constante.

1.4.- El Coeficiente de Variación de Pearson (C.V.)

Las medidas de tendencia central tienen como objetivo el sintetizar los datos en un valor representativo, las medidas de dispersión nos dicen hasta que punto estas medidas de tendencia central son representativas como síntesis de la información. Las medidas de dispersión cuantifican la separación, la dispersión, la variabilidad de los valores de la distribución respecto al valor central. Distinguimos entre medidas de

...

Descargar como (para miembros actualizados) txt (14 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com