ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Luminaria fluorescente Bulbos fluorescentes en paralelo


Enviado por   •  12 de Mayo de 2015  •  3.268 Palabras (14 Páginas)  •  234 Visitas

Página 1 de 14

Luminaria fluorescente

Bulbos fluorescentes en paralelo.

Se conoce por luminaria fluorescente, al conjunto que forman una lámpara, denominada tubo fluorescente, y una armadura, que contiene los accesorios necesarios para el funcionamiento. En ciertos lugares se conoce como luminaria solamente a la lámpara. La lámpara es de descarga de vapor de mercurio a baja presión y se utiliza normalmente para la iluminación doméstica o industrial. Su ventaja frente a otro tipo de lámparas, como las incandescentes, es su eficiencia energética.

La lámpara consiste en un tubo de vidrio fino revestido interiormente con diversas sustancias químicas compuestas llamadas fósforos, aunque generalmente no contienen el elemento químico fósforo y no deben confundirse con él. Esos compuestos químicos emiten luz visible al recibir una radiación ultravioleta. El tubo contiene además una pequeña cantidad de vapor de mercurio y un gas inerte, habitualmente argón o neón, a una presión más baja que la presión atmosférica. En cada extremo del tubo se encuentra un filamento hecho de tungsteno, que al calentarse al rojo contribuye a la ionización de los gases.

Índice [ocultar]

1 Historia

2 Funcionamiento

2.1 Con cebador y reactancia

2.1.1 Compensación en lámparas fluorescentes

2.2 Con balasto electrónico

2.3 Encendido

3 Propiedades

4 Ventajas y desventajas

4.1 Consumo de energía

4.2 Parpadeo

4.3 Vida útil

4.4 Otras desventajas

5 Referencias

6 Véase también

7 Enlaces externos

Historia[editar]

El más antiguo antecedente de la iluminación fluorescente posiblemente sea el experimento realizado y descrito en 1707 por Francis Hauksbee, que generó por ionización electrostática del vapor de mercurio una luz azulada que alcanzaba para leer un escrito. Posteriormente el físico alemán Heinrich Geissler construyó en 1856 un dispositivo mediante el cual obtuvo una luz de brillo azulado a partir de un gas enrarecido encerrado en un tubo y excitado con una descarga eléctrica. Debido a su forma, este dispositivo pasó a llamarse «tubo de Geissler». En la Feria Mundial de 1893 fueron mostrados dispositivos fluorescentes desarrollados por Nikola Tesla.

En 1891, el inventor estadounidense, y colaborador de Tesla, Daniel McFarlane Moore comenzó a realizar experimentos con tubos de descarga gaseosa. Creó así en 1894 la «lámpara Moore», que se trataba de una lámpara comercial que competía con las bombillas de luz incandescentes inventadas por su antiguo jefe Thomas Alva Edison. Estas lámparas, que contenían nitrógeno y dióxido de carbono, emitían luz blanca y rosada respectivamente, y tuvieron un éxito moderado. En 1904, las primeras de estas lámparas se instalaron en unos almacenes de la ciudad estadounidense de Newark. Como las labores de instalación, mantenimiento y reparación de estas lámparas eran dificultosas, no tuvieron éxito.1 2 3

En 1901, Peter Cooper Hewitt mostró su lámpara de vapor de mercurio, la cual emitía luz de coloración verde-azulada, que era impropia para la mayoría de los usos prácticos. Sin embargo, su diseño estaba muy cerca del de las lámparas actuales, además de tener mayor eficiencia que sus similares incandescentes.

En 1926, Edmund Germer, Friedrich Meyer y Hans Spanner propusieron incrementar la presión del gas dentro del tubo y recubrirlo internamente con un polvo fluorescente que absorbiera la radiación ultravioleta emitida por un gas en estado de plasma, y la convirtiera en una luz blanca más uniforme. La idea fue patentada al año siguiente y posteriormente la patente fue adquirida por la empresa estadounidense General Electric y bajo la dirección de George E. Inman la puso a punto para su uso comercial en 1938.4 Los conocidos tubos rectos y de encendido por precalentamiento se mostraron por primera vez al público en la Feria Mundial de New York en el año 1939. Desde entonces, los principios de funcionamiento se han mantenido inalterados, salvo las tecnologías de manufactura y materias primas usadas, lo que ha redundado en la disminución de precios y ha contribuido a popularizar estas lámparas en todo el mundo.

Funcionamiento[editar]

Con cebador y reactancia[editar]

Es un sistema de funcionamiento que va cayendo en desuso desde la aparición de dispositivos electrónicos que hacen la misma función de mejor manera y con menor consumo de energía. Se describe, de todos modos, porque todavía existen muchas luminarias de este tipo y seguirán existiendo durante bastante tiempo, aunque ahora raramente se instalan nuevas. La Unión Europea, promoviendo el ahorro energético, exige que los balastos de estas luminarias sean cada día más eficientes, y eso solo se puede lograr con balastos electrónicos. El Reglamento (CE) N°245/2009 de la comisión del 18 de marzo de 2009 preveía la prohibición total de este tipo de balastos, e incluso de alguno electrónico de los menos eficientes, a partir de 2017,5 pero en el reglamento 347/20106 ha limitado dicha previsión a la prohibición de los modelos menos eficientes.

En la figura de arriba se distinguen, aparte de la propia lámpara, dos elementos fundamentales: el «cebador» (también llamado «arrancador» o «partidor») y la «reactancia» o «balasto», que proporciona reactancia inductiva. En algunos países de habla española se emplean aún sus sinónimos ingleses starter y ballast.

El cebador, partidor o arrancador está formado por una pequeña ampolla de cristal que contiene gases a baja presión (neón, argón y gas de mercurio) y en cuyo interior se halla un contacto formado por una lámina bimetálica doblada en "U". En paralelo con este contacto hay un condensador destinado al doble efecto de actuar de amortiguador de chispa o apagachispas, y de absorber la radiación de radiofrecuencias que pudiesen interferir con receptores de radio, TV o comunicaciones. La presencia de este condensador no es imprescindible para el funcionamiento del tubo fluorescente, pero ayuda bastante a aumentar la vida útil del contacto del par bimetálico cuando

...

Descargar como (para miembros actualizados)  txt (20.8 Kb)  
Leer 13 páginas más »
Disponible sólo en Clubensayos.com