ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

METABOLISMO DE CARBOHIDRATO


Enviado por   •  25 de Febrero de 2015  •  3.026 Palabras (13 Páginas)  •  332 Visitas

Página 1 de 13

METABOLISMO DE CARBOHIDRATOS

La necesidad constante de energía a la célula se debe a

varias funciones,

: (a) la realización de un trabajo mecánico, por ejemplo, la contracción muscular y movimientos celulares,

(b) el transporte activo de iones y moléculas y

(c) la síntesis de moléculas.

en los animales, incluyendo al hombre, la energía útil para la célula es la energía química, la cual se encuentra contenida en los nutrientes (carbohidratos y lípidos, principalmente) que se consumen. A través de un conjunto procesos enzimáticos bien definidos, la célula extrae dicha energía y la hace disponible para que se realicen una gran variedad de procesos celulares, síntesis de (anabolismo) y degradación (catabolísmo) de biomoléculas, a la suma de ambos procesos se le identifica como Metabolismo. La célula ha diseñado para la glucosa, los ácidos grasos y los aminoácidos un proceso metabólico único (metabolismo de carbohidratos, de lípidos y de proteínas, respectivamente), acompañado cada uno de ellos de un estricto mecanismo de regulación (control metabólico).

Procesos anabólico y catabólico de la glucosa.

Las vías enzimáticas relacionadas con el metabolismo de la glucosa son:

(1) oxidación de la glucosa, (2) formación de lactato (3) metabolismo del glucógeno,

(4) gluconeogénesis y (6) vía de las pentosas fosfato.

OXIDACIÓN DE LA GLUCOSA

Involucra un conjunto de reacciones enzimáticos, ligadas una de la otra y vigiladas por un estricto control metabólico, todo con el único fin, de hacer disponible para célula, la energía química contenida en la glucosa. La reacción global es:

Glucosa CO2 + H2O + ATP

La formación de CO2 + H2O + ATP a partir de la glucosa, se lleva a cabo,

porque existe una disponibilidad de O2 y que aunado a la necesidad de energía, se

inducen los procesos enzimáticos claramente definidos por sustratos y productos, ellos

son: (1) glucólisis, (2) transformación del piruvato en acetil CoA, (3) ciclo de Krebs y

(4) fosforilación oxidativa.

Glucólisis. se realiza en el citosol y comprende la conversión de glucosa en piruvato, cuya reacción global es:

Glucosa + 2 Pi + 2 ADP + 2 NAD+

2 piruvato + 2 ATP + 2 NADH + 2 + + 2 H2O

En este proceso participan 10 enzimas diferentes que catalizan diez reacciones

secuénciales, las cuales podríamos dividir en tres etapas:

a) formación de fructosa 1,6- bisfosfato a partir de glucosa,

b) formación de triosas fosfato (gliceraldehido 3-fosfato y dihdrixiacetona fosfato) a partir de fructosa 1,6-bisfosfato y

c) formación de piruvato a partir de gliceraldheido 3-fosfato.

En la primer etapa se consumen dos ATP´s, uno con la enzima hexoquinasa y

después de una reacción de isomerización, se emplea el segundo ATP, con la enzima

fosfofructoquinasa , reacciones que dan origen a la fructosa 1,6-bisfosfato, con la que se

inicia la segunda etapa, al convertirse la fructosa 1,6-bisfosfato en sustrato de la enzima

aldolasa y cuyos productos son las dos triosas fosfato (gliceraldehido 3-fosfato y

dihidroxiacetona fosfato), seguidamente se inicia la tercer etapa, la que se caracteriza

por la isomerización de la dihidroxiacetona fosfato en gliceraldehido 3-fosfato por lo

que al finalizar esta etapa, contamos con dos moléculas de gliceraldehido 3-fosfato,

mismas que servirán de sustrato para la formación de piruvato, uno por cada una de

ellas. Con la síntesis de piruvato, termina la tercer etapa, la que se distingue

inicialmente, por el requerimiento de la coenzima NAD + y de un Pi (ortofosfato), para

oxidar y fosforilar al gliceraldehido 3-fosfato el cual se transforma en 1,3- bisfosfoglicerato mas NADH (coenzima reducida), a partir de este producto recién formado y por acción de la enzima fosfoglicerato quinasa se sintetiza y se libera, la primer molécula de ATP y mas adelante, en la reacción catalizada por la piruvato quinasa, se forma a nivel de sustrato, la segunda molécula de ATP. Es en este punto,donde finaliza la glucólisis, sin embargo, son los 2 ATP´s liberados y los 2 equivalentes reducidos (NADH +) los que no debemos olvidar. Con la importación del piruvato hacia la mitocondria y su transformación en acetil-CoA se inicia la siguiente etapa de la oxidación de la glucosa. Las mitocondrias albergan la enzima piruvato deshidrogenasa, las enzimas del ciclo de Krebs, las enzimas que catalizan la oxidación de los ácidos grasos y las enzimas y proteínas involucradas en el transporte de electrones y síntesis de ATP, por lo que las hace ser, los centros del metabolismo oxidativo en eucariontes.

Transformación del piruvato en acetil CoA. Una ves formado el piruvato,

este se transloca hacia el interior de la mitocondria, en donde será transformado por

acción del complejo enzimático piruvato deshidrogenasa ( piruvato dehisrogenasa, dihidrolipoil deshidrogenasa y dihidrolipoil transacetilasa) en Acetil CoA, vía un reacción de tipo descarboxilación oxidativa. Piruvato + CoA + NAD+ acetil-CoA + CO2 + NADH

Las coenzimas y grupos protéticos requeridos en esta reacción son pirofosfato de tiamina (TPP), dinucleótido de flavina y adenina (FAD), dinculeótido de niacina y adenina (NAD+) y lipoamida (ácido lipóico). La descarboxilación oxidativa del piruvato, dirige a los átomos de carbono de la glucosa a su liberación como CO2 en el ciclo de Krebs (ciclo del ácido cítrico) y por consiguiente, la producción de energía.

El ciclo de Krebs. Este proceso, se inicia con la condensación irreversible de las moléculas de Acetil-CoA y oxaloacetato, esta reacción es catalizada por la enzima citrato sintasa y su producto es el citrato. A partir de citrato, se despliega una serie de reacciones irreversibles, que culminan con la generación de otra molécula de oxaloacetato, pasando por la formación de -cetoglutarato y su tranformación en succinil CoA + NADH + CO2, reacción catalizada por un complejo enzimático denominado complejo del -cetoglutarato deshidrogenasa que requiere como coenzimas y grupos prostéticos a TPP, FAD, NAD+ y lipoamida, igual a los requeridos por el complejo de la piruvato deshidrogenasa. Otros intermediarios son: la formación de succinato y liberación de un GTP a partir de succinil CoA y por consiguiente la síntesis de fumarato a partir de succinato, reacción el la cual se libera un FADH2, existetambién en el ciclo de Krebs un sitio mas de descarboxilación oxidativa, en d onde se forma NADH + CO2 y otro donde únicamente se libera NADH. La estiquiometría del

ciclo de Krebs es:

Acetil-CoA + 3 NAD+ + FAD + GDP + Pi + 2H2O

2CO2 + 3NADH + FADH2 + GTP + 2H+ + CoA

El ciclo de Krebs es la vía común para la oxidación aeróbica de los sustratos energéticos, condición que convierte a este proceso enzimático en la vía degradativa más importante para la generación de ATP. Los 3NADH y el FADH2 liberados en el ciclo de Krebs, son reoxidados por el sistema enzimático transportador de electrones (Figura 1), estableciendo así un flujo de electrones, los cuales son dirigidos hacia el O2 como aceptor final, los productos de este proceso son una molécula de agua y una gran cantidad de energía liberada, energía que es utilizada para sintetizar ATP. Al acoplamiento entre la oxidación de los equivalentes reductores (NADH, FADH2) y la síntesis de ATP (ATP sintetasa) se les conoce como fosforilación oxidativa. Figura 1. Cadena respiratoria y ATP sintasa.

Cadena transportadora de electrones. La cadena transportadora de electrones

es una serie de cuatro complejos (I, II, III, IV) a través de los cuales pasan los electrones.

Los electrones son llevados del Complejo I y II al Complejo III por la coenzima Q (CoQ o ubiquinona) y del Complejo III al Complejo IV por la proteína citocromo c.

Los electrones del NADH mitocondrial son transferidos al FMN uno de los grupos prostéticos de la NADH-Q oxidorreductasa (Complejo I), posteriormente los electrones se transfieren a un segundo tipo de grupo prostético el de las proteínas hierro-azufre y de aquí pasarán a la coenzima Q (QH2 o ubiquinol), quien también recibe electrones de la succinato-Q reductasa (Coplejo II) a este complejo pertenece la enzima del ciclo de Krebs succinato deshidrogenasa la que genera FADH2, quien cede sus electrones a proteínas hierro-azufre y de aquí a la coenzima Q para formar QH2 . La función del Complejo III identificado como Q-citocromo c oxidorreductasa es catalizar la transferencia de electrones desde QH2 al citocromo c oxidado (cyt c). La etapa final de la cadena transportadora de electrones consiste en la oxidación del cyt c reducido generado por el Complejo III y la consiguiente reducción del O2 a dos moléculas de H2O. Esta reacción es catalizada por la citocromo c oxidasa (Complejo IV). Durante el flujo de electrones por la cadena respiratoria se realiza una transferencia de protones (H+) vía los Complejos I, III y IV que va desde la matriz de la mitocondria hacia la zona localizada entre la mambrana mitocondrial interna y externa (espacio intermembranal).

Figura 2. Complejos de la cadena respiratoria.

La coincidencia de un flujo de electrones y de protones a través de una membrana

lipídica ocasiona la generación de un gradiente de pH y un potencial de membrana,

ambas condiciones constituyen una fuerza protón-motriz que se utiliza para dirigir la

síntesis de ATP vía la enzima ATP sintasa (Figuras 1 y 2).

ADP3¯ + HPO4

2¯ + H+ ATP4¯ + H2O

Un flujo de H+ a través de la ATP sintasa ocasiona la liberación del ATP hacia la matriz

mitocondrial. La fuente inmediata de estos protones es el espacio intermembranal, en

donde se localizan los protones que fueron translocados a través de los Complejos I, III

y IV de la cadena transportadora de electrones.

Hasta ahora se ha considerado la oxidación del NADH y FADH2 formados en la

mitocondria (transformación del piruvato en acetil CoA y ciclo de Krebs), sin embargo,

NADH citosólico liberado durante la reacción catalizada por la gliceraldehido-3-fosfato deshidrogenasa debe ser reoxidado para que continúe la glucólisis, por lo que deberá ser

transferido a la mitocondria para su oxidación a nivel de la cadena transportadora de

electrones, pero debido a que este equivalente reductor no puede atravesar por sí mismo

la membrana mitocondrial, la célula contempló la reducción de un sustrato por el

NADH en el citoplasma, una vez reducido este sustrato, es transportado hacia la matriz

mitocondrial por un acarreador específico , ya dentro de la mitocondria, el sustrato reducido será oxidado y devuelto al citoplasma para experimentar de nuevo el mismo ciclo. A este sistema de transporte específico, se le conoce con el nombre de lanzadera,

para el NADH de citoplasma son dos las lanzaderas reportadas, uno es el de la

dihidroxiacetona fosfato/glicerol-3-fosfato que genera dentro de la mitocondria FADH2

y que es especialmente activa en el cerebro, y el otro sistema de transporte es el de la

lanzadera malato/aspartato principalmente activa en hígado y corazón, y que produce

NADH.

FORMACIÓN DE LACTATO.

Cuando la cantidad de oxígeno disponible para la célula es limitada, como ocurre en el

músculo durante la actividad intensa, el NADH generado durante la glucólisis no puede

reoxidarse a tasas comparables en las mitocondrias y con la finalidad de mantener la

homeostasis, el piruvato es entonces reducido por el NADH para formar lactato, reacción catalizada por la lactato deshidrogenasa esta desviación metabólica del piruvato mantiene a la glucólisis operativa bajo condiciones anaeróbicas. La reacción global de la conversión de glucosa a lactato es:

Glucosa + 2Pi + 2ADP 2 lactato + 2 ATP + 2 H2O

METABOLISMO DEL GLUCÓGENO

El glucógeno es un polisacárido donde se almacenan glucosas, es una estructura de un

elevado peso molecular, altamente ramificado. Los residuos de glucosa están unidos mediante enlaces glucosídicos  (1-4) y  (1-6), los principales depósitos de glucógeno

en los vertebrados se encuentran en el músculo esquelético y en el hígado. La degradación de estas reservas de glucosa o movilización del glucógeno tiene como finalidad suministrar glucosa 6-fosfato, la enzima clave en la ruptura del glucógeno es la glucógeno fosforilasa quien escinde mediante la adición de ortofosfato (Pi) los enlaces de tipo  (1-4) para producir glucosa 1-fosfato. La ruptura de un enlace por la adición de un ortofosfato se reconoce como fosforolisis.

Glucógeno + Pi glucosa 1-fosfato + glucogeno

(n residuos) (n -1 residuos)

La glucógeno fosforilasa no es capaz de romper enlaces más allá de los puntos de ramificación, ya que los enlaces glucosídicos  (1-6) no son susceptibles de escisión por la fosforilasa, de hecho, la ruptura se detiene a los cuatro residuos de glucosa de un punto de ramificación. Para eliminar la ramificación se requiere de una segunda enzima, la (1-4 1-4) glucantransferasa que cataliza dos reacciones. En primer lugar, tiene la actividad de transferasa, en la que la enzima elimina tres residuos de glucosa restantes y transfiere este trisacárido intacto al extremo de alguna otra ramificación externa. Esta

trasnferencia deja expuesto un solo residuo de glucosa unido por un enlace glucosídico

 (1-6), este residuo se libera por la actividad (1 6)-glucosidasa que posee la misma enzima glucantransferasa, lo que da lugar a una molécula de glucosa libre y una estructura no ramificada de residuos de glucosa susceptible de ser fraccionado por la fosforilasa. La glucosa 1-fosfato producida por la fosforilasa, debe convertirse a glucosa 6-fosfato para metabolizarse mediante la glucólisis, esta reacción es catabolizada por la enzima fosfoglucomutasa. El hígado libera glucosas a sangre durante la actividad muscular y los intervalos entre comidas para que puedan consumirla principalmente el cerebro y músculo esquelético. Sin embargo, la glucosa fosforilada, producida por la degradación del glucógeno no se transporta con facilidad fuera de las células, para esto, el hígado contiene una enzima hidrolítica, la glucosa 6-fosfatasa, que escinde el grupo fosforilo y produce glucosa libre y ortofosfato.

La degradación del glucógeno esta regulada por las hormonas adrenalina (músculo) y glucagón (hígado).

La síntesis de glucógeno la realiza la célula de una manera totalmente diferente al

mecanismo de su degradación:

Síntesis: Glucógeno + UDP-glucosa glucógeno n +1 + UDP

Degradación: Glucógenon+1 + Pi glucógeno n + glucosa 1-fosfato

La UDP-glucosa es una forma activada de la glucosa y se sintetiza a partir de glucosa 1-

fosfato y UTP en una reacción caltalizada por la UDP-glucosa pirofosforilasa. Para la

síntesis de glucógeno es necesaria la presencia de un oligosacárido de glucosas (este oligosacárido se encuentra unido a una proteína identificada como glucogenina) unidas por enlaces  (1-4) y la enzima glucógeno sintetasa que es la enzima reguladora del proceso. La enzima glucógeno sintetasa enlaza mediante la formación un enlace  (1-4) glucosídico a la glucosa del UDP-glucosa con una de las glucosas del oligosacárido, lo que desplaza al UDP, repetidas participaciones de la glucógeno sintetasa hacen posible el crecimiento del glucógeno. La glucógeno sintetasa cataliza solamente la síntesis de

enlaces  (1-4), por lo que es necesaria la participación de otra enzima para formar enlaces  (1-6), que hagan del glucógeno un polímero ramificado. La ramificación tiene lugar después de que un cierto número de residuos de glucosa se hayan unido mediante enlaces  (1-4) por la glucogeno sintetasa. La enzima ramificante o mejor dicho, la amilo-(1,4 1,6)-transglucosilasa, esta enzima transfiere un fragmento terminal de 6 ó 7 residuos de longitud, desde un extremo de al menos 11 residuos de longitud a un grupo hidroxilo situado en posición 6 de un residuo de glucosa del interior del polímero,

esta reacción crea dos extremos para que continué la acción de la glucógeno sintetasa.

Las ramificaciones son importantes porque aumentan la solubilidad del glucógeno y el número de extremos a partir de los que se puede obtener glucosa 1-fosfato. La hormona encargada de regular la síntesis de glucógeno es la insulina.

GLUCONEOGÉNESIS

La mayoría de los órganos animales pueden metabolizar diversas fuentes de carbono para generar energía. Sin embargo el cerebro y sistema nervioso central, así como la médula renal, los testículos y los eritrocitos, necesitan glucosa como única o principal fuente de energía. Por consiguiente, las células animales deben ser capaces de sintetizar glucosa a partir de otros precursores y también de mantener las concentraciones sanguíneas de glucosa dentro de los límites estrechos, tanto para el funcionamiento

adecuado de estos tejidos como para proporcionar los precursores para la síntesis de glucógeno. Cuando las reservas de glucosa sufren una rápida disminución se inicia la síntesis de glucosa a partir de precursores no carbohidratados (sustratos gluconeogénicos), proceso conocido como gluconeogénesis.

Los sustratosgluconeogénicos son: lactato, aminoácidos, glicerol, propionato, la gluconeogénesis tiene lugar principalmente en el citosol, aunque algunos precursores se generen en las mitocondrias y deben ser transportados al citosol para utilizarse. El principal órgano gluconeogénico es el hígado, con una contribución menor, aunque aún significativa, de la corteza renal, los principales destinos de la glucosa formada en la gluconeogénesis son el tejido nervioso y el músculo esquelético. En la glucólisis la glucosa se convierte a piruvato y en la gluconeogénesis el piruvato se convierte a glucosa. Sin embargo, la gluconeogénesis no es el proceso inverso de la glucólisis. En la glucólisis las reacciones

irreversibles catalizadas por la hexoquinasa, fosfofructoquinasa y la piruvato quinasa,

son salvadas en la gluconeogénesis por las enzimas:

Piruvato carboxilasa y fosfoenolpiruvato carboxiquinasa:

Piruvato + CO2 + ATP + H2O oxaloacetato + ADP + Pi + 2 H+

Oxaloacetato + GTP fosfoenolpiruvato + GDP + CO2

Fructosa 1,6-bisfosfatasa:

Fructosa 1.6-bisfosfato fructosa 6-fosfato

Glucosa 6-fosfatasa:

Glucosa 6-fosfato glucosa + Pi

La estequiometría de la gluconeogénesis es:

2 Piruvatos + 4 ATPA + 2 NADH + 6 H2O

glucosa + 4 ADP + 2 GDP + 6 Pi +2 NADH + 2 H+

Como se puede observar, el costo energético para la gluconeogénesis es mayor que el de

la glucólisis. El lactato se incorpora a la gluconeogénesis vía su conversión a piruvato y

el glicerol entra a nivel de las triosas fosfato.

VIA DE LAS PENTOSAS FOSFATO

Este proceso enzimático está diseñado para satisfacer las necesidades celulares de

NADPH, el cual es empleado en la síntesis reductora de ácidos grasos, colesterol,

nucleótidos y glutatión, entre otras moléculas. La vía de las pentosas fosfato se inicia

con la oxidación de tres moléculas de glucosa 6-fosfato y por lo tanto, tres de 6-

fosfogluconato por las enzimas glucosa 6-fosfato deshidorgenasa y 6-fosfogluconato

deshidrogenasa respectivamente, para generar el número correspondiente de NADPH

y ribosa 5-fosfato. La ribosa 5-fosfato, es utilizada por la célula para la síntesis de RNA,

DNA, ATP, NADH, FAD y coenzima A. Con la finalidad de convertir el exceso de

monosacárido de cinco átomos de carbono fosforilados producidos en este proceso y los

que provienen de la digestión de los ácidos nucleicos, se cataliza en la misma vía la

interconversión de monosacáridos de tres, cuatro, cinco, seis y siete carbonos en

intermediarios de la glucólisis, lo que en su momento podría generar energía. En cuanto

al control metabólico se refiere, esta vía depende de los niveles de NADP+ . Por otro

lado, la distribución de las moléculas de glucosa 6-fosfato hacia la vía de las pentosas,

está en función de las necesidades de NADPH, ribosa 5-fosfato y ATP.

BIBLIOGRAFÍA.

1. Mathews K.C., van Holde E.K., Aher G.K. Bioquímica. 3th Edición. Pearson

Addison Wesley, España 2004.

2. Stryer L., Berg, M.J., Tymoczko L.J. Bioquímica. 5th Edición. Reverté, S.A.

Barcelona, España 2002.

3. Voet D., Voet G.J. Biochemistry. 2th Edición. John Wilwy & Sons, INC. E.U.

1995.

...

Descargar como  txt (19.8 Kb)  
Leer 12 páginas más »
txt