ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

PROBABILIDAD


Enviado por   •  12 de Marzo de 2013  •  2.548 Palabras (11 Páginas)  •  380 Visitas

Página 1 de 11

Unidad 4. Probabilidad

1. Introducción

Muchos de los eventos que ocurren en la vida diaria no pueden ser predichos con exactitud desde antes por diversas razones, pues la mayoría de los hechos están influidos por factores externos. Además, existen aquellos sucesos que están directamente influidos por el azar, es decir, por procesos que no se está seguro de lo que va a ocurrir. Sin embargo, la probabilidad nos permite acercarnos a esos sucesos y estudiarlos, ponderando las posibilidades de su ocurrencia y proporcionando métodos para tales ponderaciones.

Precisamente, algunos de esos métodos proporcionados por la probabilidad nos llevan a descubrir que algunos sucesos tienen una mayor o menor probabilidad de ocurrir que la ponderación asignada a través del sentido común. Nuestros sentidos, la información previa que poseemos, nuestras creencias o posturas, nuestras inclinaciones, son algunos de los factores que intervienen para no permitirnos hacer ponderaciones reales y sistemáticas. La probabilidad nos permitirá estudiar los eventos de una manera sistemática y más cercana a la realidad, retribuyéndonos con información más precisa y confiable y, por tanto, más útil para las disciplinas humanas.

Precisamente, un applet que muestra cómo no siempre la probabilidad que le asignamos a un evento a través del sentido común coincide con la probabilidad real obtenida por medios teóricos es el desarrollado por West y Street de la University of South Carolina, que permite estudiar un concurso de televisión de los 70's llamado Let's Make a Deal.

2. Análisis combinatorio

En ocasiones el trabajo de enumerar los posibles sucesos que ocurren en una situación dada se convierte en algo difícil de lograr o, simplemente, tedioso. El análisis combinatorio, o cálculo combinatorio, permite enumerar tales casos o sucesos y así obtener la probabilidad de eventos más complejos.

En el caso de que existan más de un suceso a observar, habría que contar el número de veces que pueden ocurrir todos los sucesos que se desean observar, para ello se utiliza el principio fundamental de conteo:

Si un suceso se puede presentar de n1 formas, y otro se puede presentar de n2 formas, entonces el número de formas en que ambos sucesos pueden presentarse en ese orden es de n1•n2.

En otras palabras, basta multiplicar el número de formas en que se pueden presentar cada uno de los sucesos a observar.

Este principio nos remite automáticamente al factorial de un número natural, que se puede pensar como una función con dominio los números naturales junto con el cero y codominio los números naturales. El factorial de un número n, denotado n!, se define como:

Ahora, n es muy grande el proceso de cálculo se vuelve tedioso y muy cargado, incluso para una computadora, por lo que se utiliza la aproximación de Stirling a n!:

donde e2.71828..., que es la base de los logaritmos neperianos.

En Excel existe la función FACT(n) que calcula el factorial de un número entero no negativo n.

En el análisis combinatorio se definen las permutaciones, con o sin repetición, y las combinaciones.

2.2 Permutaciones (u ordenaciones) con repetición

Las permutaciones son también conocidas como ordenaciones, y de hecho toman este nombre porque son ordenaciones de r objetos de n dados. En este curso las representaremos como ORnr ó nORr.

Por ejemplo: Sea A={a,b,c,d}, ¿cuántas "palabras" de dos letras se pueden obtener?

Se pide formar permutaciones u ordenaciones de 2 letras, cuando el total de letras es 4. En este caso r=2 y n=4.

Las "palabras" formadas son: aa, ab, ac, ad, ba, bb, bc, bd, ca, cb, cc, cd, da, db, dc, dd. En total son 16.

En general, si se toman r objetos de n, la cantidad de permutaciones u ordenaciones con repetición obtenidas son:

ORnr = nORr = n r

2.3 Permutaciones (u ordenaciones) sin repetición

En este caso, a diferencia del anterior, se realizan ordenaciones de r objetos de n dados atendiendo a la situación de cada objeto en la ordenación. Su representación será Pnr ó nPr.

Por ejemplo: Sea el mismo conjunto A={a,b,c,d}, ¿cuántas ordenaciones sin repetición se pueden obtener?

Lo que resulta es: ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc. Son 12 en total.

En general, si se toman r objetos de un total de n, la cantidad de permutaciones

Pnr = nPr =

El Excel cuenta con la función PERMUTACIONES(n,r) que realiza el cálculo.

2.4 Combinaciones

Es una selección de r objetos de n dados sin atender a la ordenación de los mismos. Es decir, es la obtención de subcojuntos, de r elementos cada uno, a partir de un conjunto inicial de n elementos. La denotaremos con Cnr, nCr ó .

Por ejemplo: Si tomamos el mismo conjunto A={a,b,c,d}, ¿cuántos subconjuntos de 2 elementos cada uno se pueden obtener?

Haciéndolos se obtienen: {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}. Son seis los subconjuntos.

En general, si de n objetos dados se hacen combinaciones de r objetos cada una, el número de combinaciones obtenidas son:

Cnr = nCr =

o, que es lo mismo,

Cnr = nCr =

En Excel la función COMBINAT(n,r) calcula las combinaciones de n objetos tomando r de ellos.

3. Eventos

Cuando se realiza un experimento, que es cualquier proceso que produce un resultado o una observación, se van a obtener un conjunto de valores. A este conjunto de valores que puede tomar una variable se le denomina espacio muestral.

Por ejemplo: Si se tiene un dado cualquiera, el espacio muestral (EM) es EM={1,2,3,4,5,6}.

Si existen más de una variable, el espacio muestral está formado por las combinaciones de valores de cada una de las variables.

Si tomamos un subconjunto cualquiera del espacio muestral tenemos lo que se denomina un evento, y si éste consta de un solo elemento entonces es un evento elemental.

Como se puede uno imaginar, existen eventos que siempre, no importa el número de experimentos o su situación, ocurren, y en cambio existen otros que nunca ocurren. Los que siempre ocurren son los eventos seguros, y los que nunca son los eventos imposibles.

Sin embargo, no todos los resultados son al azar, pues si un experimento es cualquier proceso entonces los resultados pueden tomar cualquier tipo de valor. Por esta razón, se define como experimento aleatorio al proceso en el que se pueden predecir con certeza la ocurrencia de sus eventos, con excepción del seguro o del imposible. Hay que hacer la observación que esta definición habla en términos generales y no específicamente sobre algún experimento en particular.

A aquélla variable que está asociada a un experimento de este tipo se le denomina variable aleatoria.

En cambio, a un experimento no aleatorio se le denomina experimento determinístico.

Cuando hablamos de varios eventos dentro del mismo experimento se pueden dar varios casos.

Si dos o más eventos no pueden ocurrir simultáneamente, se llaman eventos mutuamente excluyentes, es decir, que la intersección de ambos eventos es vacía.

Por otro lado, en ocasiones un evento o más eventos dependen de otro evento previo, es decir, un evento A ocurre dado que ocurrió un evento B. Si existe este tipo de relación entre eventos se dice que son eventos dependientes o condicionados (el evento A depende del evento B, o el resultado del evento A está condicionado al resultado del evento B). Por otro lado, si no existe tal relación entre eventos se dice que son eventos independientes. Los criterios de dependencia o de independencia se definirán más adelante, en términos de probabilidad condicional.

4. Probabilidad de eventos

Para calcular la probabilidad de eventos es necesario que éstos se comporten de una maner más o menos estable. Precisamente, se echa mano de la regularidad estadística, que es la propiedad de los fenómenos aleatorios, y que consiste en que al aumentar el número de repeticiones de un experimento en condiciones prácticamente constantes, la frecuencia relativa de ocurrencia para cada evento tiende a un valor fijo.

Sin embargo, al momento de definir la probabilidad de un evento podemos tomar en cuenta los siguientes criterios:

1. La probabilidad subjetiva de un evento se la asigna la persona que hace el estudio, y depende del conocimiento que esta persona tenga sobre el tema. Precisamente por su carácter de subjetividad no se considera con validez científica, aunque en la vida diaria es de las más comúnes que se utilizan al no apoyarse más que en el sentido común y los conocimientos previos, y no en resultados estadísticos.

2. La probabilidad frecuencial de un evento es el valor fijo al que tienden las frecuencias relativas de ocurrencia del evento de acuerdo a la regularidad estadística. Esta definición sería la más real, pero proporciona probabilidades aproximadas, es decir, proporciona estimaciones y no valores reales. Además, los resultados son a posteriori, pues se necesita realizar el experimento para poder obtenerlo. (Para ver un ejemplo haz click aquí.)

3. La probabilidad clásica de un evento E, que denotaremos por P(E), se define como el número de eventos elementales que componen al evento E, entre el número de eventos elementales que componen el espacio muestral:

Es la definición más utilizada porque supone de antemano, y se necesita como requisito indispensable, que todos los eventos elementales tienen la misma probabilidad de ocurrir.

5. Axiomas de la probabilidad

Recordemos primero que las frecuencias relativas de una distribución tenían las siguientes propiedades:

1. Las frecuencias relativas son mayores o iguales que cero.

2. La frecuencia relativa del espacio muestral es igual a la unidad.

3. Si dos eventos son mutuamente excluyentes, es decir que no ocurren simultáneamente, entonces la frecuencia relativa de su unión es la suma de las frecuencias relativas de cada uno.

Tomando en cuenta que la probabilidad de un evento, de acuerdo a la definición ya expuesta, es la frecuencia relativa cuando se aumenta el tamaño de la muestra, se tienen lo siguiente.

Si E es un evento de un espacio muestral S y P(E) es la probabilidad de E, entonces se satisfacen los axiomas de la probabilidad:

1. 0 P(E)1.

2. P(S) = 1.

3. Si E1, E2, ... , En son eventos mutuamente excluyentes, entonces

Con estos axiomas podremos tratar algunas de las propiedades de la probabilidad de eventos.

6. Posibilidades y probabilidades

Se habla muy comúnmente en sitios de apuestas, como en las autódromos o hipódromos, de que "las apuestas a tal o cual participante es de x a y", es decir, que las posibilidades de que gane es de x a y. Esta manera de expresarse se refiere al uso de razones.

En términos generales, la posibilidad de que ocurra un evento se determina mediante la razón de la probabilidad de que ocurra a la probabilidad de que no ocurra.

Esto quiere decir que si la probabilidad de que un evento ocurra es p, entonces las posibilidades de que ocurra son x a y, es decir

Tales que x y y son enteros positivos.

Por ejemplo: Si se tiran dos monedas normales (no trucadas), la probabilidad de que las dos monedas caigan cara es de ¼. Esto quiere decir si alguien apuesta a que las dos monedas no caen simultáneamente en cara, la posibilidad de ganar la apuesta es de

es decir, 3 a 1.

Hemos de considerar que si es mayor la probabilidad de que no ocurra un evento, entonces se acostumbra mencionar las posibilidades en contra del evento.

Por ejemplo: Si se tira un dado no trucado, sabemos que la probabilidad de obtener un cuatro es 1/6, es decir que la posibilidad de obtener un cuatro es de 1 a 6; pero se acostumbra decir que las posibilidades en contra, esto es, de no obtener un cuatro es de 6 a 1.

Inversamente, en el caso de tener las posibilidades de un evento, entonces es fácil obtener su probabilidad, pues si la posibilidad de un evento es de x a y, entonces la probabilidad p de que ocurra tal evento es

Por ejemplo: En la Copa Mundial de Futbol Francia 1998 se decía que el equipo mexicano tenía una posibilidad de 1 a 75 de llegar a ser el campeón del torneo.

Si se desea encontrar la probabilidad de que el equipo mexicano llegase a ser campeón, entonces se tiene que

es la probabilidad de que ocurriese el evento.

Esto tiene la ventaja de que permite, en combinación con el tercer axioma de la probabilidad, medir la confiabilidad que tienen las opiniones de las personas sobre las posibilidades que le asignan a algunos eventos. Esto quiere decir que el cálculo de las probabilidades de dos eventos mutuamente excluyentes a partir de las posibilidades otorgadas de manera subjetiva resulta como un criterio de consistencia.

Por ejemplo: Un criminólogo piensa que las posibilidades de que en la próxima semana la cantidad de delitos en una ciudad aumente con respecto a la anterior es de 5 a 2, de que sea la misma cantidad de delitos es de 1 a 3 y las posibilidades de que aumente la cantidad o sea la misma es de 7 a 4.

Si se desea saber si son consistentes las probabilidades correspondientes habría que hacer los cálculos.

Las probabilidades de aumente la cantidad de delitos, sea igual la cantidad de delitos, y de que aumente o sea igual la cantidad de delitos es, respectivamente, de

y dado que (como son eventos mutuamente excluyentes) no es lo mismo que 7/11, entonces los criterios del criminólogo pueden ser cuestionados.

7. Propiedades de la probabilidad de eventos no elementales

Cuando se tienen eventos elementales no existe mucho problema en el sentido del cálculo de las probabilidades, pues basta con una contabilización o el uso directo del cálculo combinatorio. Pero en el caso de eventos no elementales, que son los compuestos por más de un evento elemental, el proceder de manera análoga resulta muy complejo y las operaciones pueden sobrepasar la capacidad de cálculo existente. Sin embargo, utilizando los axiomas de la probabilidad y las siguientes propiedades, se podrán expresar las probabilidades de estos eventos en términos de los eventos elementales que lo componen, siempre y cuando se conozcan las probabilidades de éstos.

Veamos la probabilidad de una unión de eventos, la cual la podremos calcular de la siguiente manera:

Propiedad 1. Si A y B son dos eventos, la probabilidad de que ocurra A o B es igual a la suma de las probabilidades de ocurrencia de A y de B, menos la probabilidad de que ocurran A y B simultáneamente. Es decir,

P(AB) = P(A) + P(B) - P(AB)

Ahora, si el caso es que los eventos sean mutuamente excluyentes se tiene:

Propiedad 2. Si dos eventos, A y B, son mutuamente excluyentes entonces la probabilidad de que ocurra A o B es igual a la suma de las probabilidades de ocurrencia de A y de B. Es decir

P(AB) = P(A) + P(B)

Otra propiedad que se deriva de las anteriores es cuando se busca la probabilidad del complemento de un evento E, que denotaremos como ~E:

Propiedad 3. Si E es un evento y ~E su complemento, entonces

P(~E) = 1 - P(E)

Retomando los conceptos de eventos dependientes o condicionales, se va a definir la probabilidad condicional como sigue:

Propiedad 4. La probabilidad de que ocurra un evento A dado que ocurrió el evento B (el evento A depende del evento B), denotado P(A|B), es:

Hay que notar que esta propiedad no es conmutativa, situación que sí ocurre con la probabilidad de unión o la intersección de eventos, por lo que no hay que confundir P(A|B) y P(B|A).

Finalmente, el criterio para la independencia de eventos queda como sigue:

Propiedad 5. Dos eventos A y B son independientes si y sólo si

P(A|B) = P(A) y P(B|A) = P(B)

o, que es lo mismo:

P(AB) = P(A) • P(B)

________________________________________

Hipertexto a cargo del L.E. Víctor Larios Osorio, del Depto. de Matemáticas (Fac. Ing.) de la UAQ (México).

mailto:vil@sunserver.uaq.mx?subject=Sobre HiperEstadística

...

Descargar como  txt (15.7 Kb)  
Leer 10 páginas más »
txt