ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Problemas De Ingeniería Química


Enviado por   •  18 de Mayo de 2013  •  1.217 Palabras (5 Páginas)  •  873 Visitas

Página 1 de 5

Problemas de Ingeniería Química

Hoja 3.- Balances de Materia y Energía

1.- En el calderín de una columna de rectificación se vaporizan 650 kmoles/h de una mezcla que contiene de 10 % de benceno y 90 % de tolueno (en moles). La mezcla llega al calderín procedente del primer plato de la columna a una temperatura 5ºC por debajo de la del calderín. Para suministrar la energía necesaria se utiliza vapor de agua saturado a 1,4 atm. El calor latente de condensación del vapor de agua es -2230 kJ/kg. Determínese el caudal másico de vapor de agua necesario.

Datos: Calores latentes de vaporización (kJ/kg): Benceno: 390; Tolueno: 365. (Considérense constantes en el intervalo de temperatura en que opera la columna). Calores específicos medios (kJ/kmol.ºC): Benceno: 138; Tolueno: 148,8.

Sol.: 9911,1 kg/h

2.- Una caldera utiliza metano como combustible. Al quemador se alimenta aire en un 15% de exceso sobre el estequiométrico. El metano se alimenta a 25ºC y el aire a 100ºC. Los gases de combustión abandonan la caldera a 500ºC. Determínese la cantidad de vapor de agua saturado a 20 atm (temperatura de equilibrio, 213ºC) que se produce en la caldera si a la misma se alimenta agua a 80ºC.

Datos: Calor de combustión del metano (a 25ºC): -55600 kJ/kg. Calor latente de vaporización del agua a 20 atm: 1885 kJ/kg. Calores específicos medios en el intervalo de 25 a 500ºC (kJ/kg.ºC): CH4: 2,19; O2: 1,04; N2: 1,09 ; CO2: 0,95. Para el calor específico del agua líquida tómese un valor de 4,18 kJ/kg.ºC y para el vapor de agua 1,96 kJ/kg.ºC en todo el intervalo de temperaturas.Calor latente agua: 2382 kJ/kg.

Sol.: 26215,6 kg/100 kmoles de CH4

3.- Un procedimiento para obtener cianuro de hidrógeno consiste en tratar metano con amoniaco sobre un catalizador de platino a 1250ºC. Los reactantes se alimentan al reactor a 400ºC y la corriente de salida del mismo lo abandona a la temperatura de reacción, es decir, 1250ºC. El gas efluente del reactor está constituido por:

HCN = 23,5%  NH3 = 3,4%  CH4 = 2,6%  H2 = 70,5%

Calcúlese:

a) La conversión, referida al reactante que se encuentra en defecto.

b) La razón molar CH4/NH3 utilizada.

c) El calor que hay que aportar al reactor por cada 100 kmoles de HCN producido.

Datos: Entalpías de formación a 25ºC (kcal/mol): CH4 =  17,89  NH3 =  10,96  HCN = 31,10

Calores específicos medios (kcal/kmol K): CH4 = 17,1  NH3 = 13,5  HCN = 11,9  H2 = 7,4

Sol.: a) 90,04%; b) 0,97 kmoles CH4/kmol NH3; c) 9351584 kcal

4.- Una fracción petrolífera pesada se alimenta a 260ºC a un reactor de craqueo que opera a 500ºC. Durante el proceso se deposita coque en el catalizador de sílice-alúmina empleado. El reactor está conectado a un horno al que se alimenta continuamente el catalizador para su regeneración. El catalizador se regenera por combustión del coque, para lo que se utiliza aire a 20ºC, que se alimenta en un 10 % de exceso sobre el estequiométrico. La cantidad de coque formado representa un 7 % en peso del aceite petrolífero alimentado y a efectos de cálculos estequiométricos dicho coque se considerará constituido únicamente por C. La combustión del coque en el regenerador se considera completa y para el calor de combustión del mismo (a 20ºC) puede tomarse un valor de 8100 kcal/kg de coque. El catalizador regenerado se devuelve de forma continua al reactor de craqueo, con lo que se aporta la energía necesaria para dicho proceso de craqueo, el cual es endotérmico, con un calor de reacción (a 20ºC) de 300 kcal/kg de aceite petrolífero craqueado. Determínese:

a) Temperatura a la que opera el regenerador.

b)

...

Descargar como (para miembros actualizados)  txt (7 Kb)  
Leer 4 páginas más »
Disponible sólo en Clubensayos.com