ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Propiedades De Las Ondas


Enviado por   •  25 de Septiembre de 2014  •  1.486 Palabras (6 Páginas)  •  290 Visitas

Página 1 de 6

Propiedades de las Ondas

Las ondas electromagnéticas no necesitan un medio material para propagarse. Así, estas ondas pueden atravesar el espacio interplanetario e interestelar y llegar a la Tierra desde el Sol y las estrellas. Independientemente de su frecuencia y longitud de onda, todas las ondas electromagnéticas se desplazan en el vacío a una velocidad c = 299.792 km/s. Todas las radiaciones del espectro electromagnético presentan las propiedades típicas del movimiento ondulatorio, como la difracción y la interferencia. Las longitudes de onda van desde billonésimas de metro hasta muchos kilómetros. La longitud de onda (l) y la frecuencia (f) de las ondas electromagnéticas, relacionadas mediante la expresiónl•f = c son importantes para determinar su energía, su visibilidad, su poder de penetración y otras características.

Siendo las siguientes, las propiedades mas características de las ondas electromagnéticas.

Reflexión y Refracción

Si un rayo de luz que se propaga a través de un medio homogéneo incide sobre la superficie de un segundo medio homogéneo, parte de la luz es reflejada y parte entra como rayo refractado en el segundo medio, donde puede o no ser absorbido. La cantidad de luz reflejada depende de la relación entre los índices de refracción de ambos medios. El plano de incidencia se define como el plano formado por el rayo incidente y la normal (es decir, la línea perpendicular a la superficie del medio) en el punto de incidencia (véase figura 1). El ángulo de incidencia es el ángulo entre el rayo incidente y la normal. Los ángulos de reflexión y refracción se definen de modo análogo.

Las leyes de la reflexión afirman que el ángulo de incidencia es igual al ángulo de reflexión, y que el rayo incidente, el rayo reflejado y la normal en el punto de incidencia se encuentran en un mismo plano. Si la superficie del segundo medio es lisa, puede actuar como un espejo y producir una imagen reflejada (figura 2). En la figura 2, la fuente de luz es el objeto A; un punto de A emite rayos en todas las direcciones. Los dos rayos que inciden sobre el espejo en B y C, por ejemplo, se reflejan como rayos BD y CE. Para un observador situado delante del espejo, esos rayos parecen venir del punto F que está detrás del espejo. De las leyes de reflexión se deduce que CF y BF forman el mismo ángulo con la superficie del espejo que AC y AB. En este caso, en el que el espejo es plano, la imagen del objeto parece situada detrás del espejo y separada de él por la misma distancia que hay entre éste y el objeto que está delante.

Si la superficie del segundo medio es rugosa, las normales a los distintos puntos de la superficie se encuentran en direcciones aleatorias. En ese caso, los rayos que se encuentren en el mismo plano al salir de una fuente puntual de luz tendrán un plano de incidencia, y por tanto de reflexión, aleatorio. Esto hace que se dispersen y no puedan formar una imagen.

Ley de Snell

Esta importante ley, llamada así en honor del matemático holandés Willebrord van Roijen Snell, afirma que el producto del índice de refracción del primer medio y el seno del ángulo de incidencia de un rayo es igual al producto del índice de refracción del segundo medio y el seno del ángulo de refracción. El rayo incidente, el rayo refractado y la normal a la superficie de separación de los medios en el punto de incidencia están en un mismo plano. En general, el índice de refracción de una sustancia transparente más densa es mayor que el de un material menos denso, es decir, la velocidad de la luz es menor en la sustancia de mayor densidad. Por tanto, si un rayo incide de forma oblicua sobre un medio con un índice de refracción mayor, se desviará hacia la normal, mientras que si incide sobre un medio con un índice de refracción menor, se desviará alejándose de ella. Los rayos que inciden en la dirección de la normal son reflejados y refractados en esa misma dirección.

Para un observador situado en un medio menos denso, como el aire, un objeto situado en un medio más denso parece estar más cerca de la superficie de separación de lo que está en realidad. Un ejemplo habitual es el de un objeto sumergido, observado desde encima del agua, como se muestra en la figura 3 (sólo se representan rayos oblicuos para ilustrar el fenómeno con más claridad). El rayo DB procedente del punto D del objeto se desvía alejándose de la normal, hacia el punto A. Por ello, el objeto parece situado en C, donde la línea ABC intersecta una línea

...

Descargar como (para miembros actualizados)  txt (8.7 Kb)  
Leer 5 páginas más »
Disponible sólo en Clubensayos.com