ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

PERSONAJES DE LA PROBABILIDAD

jorge11101411 de Noviembre de 2014

968 Palabras (4 Páginas)1.990 Visitas

Página 1 de 4

PERSONAJES

Thomas Bayes: Estudió el problema de la determinación de la probabilidad de las causas a través de los efectos observados. El teorema que lleva su nombre se refiere a la probabilidad de un suceso condicionado por la ocurrencia de otro suceso. Más específicamente, con su teorema se resuelve el problema conocido como "de la probabilidad inversa". Esto es, valorar probabilísticamente las posibles condiciones que rigen supuesto que se ha observado cierto suceso. Se trata de probabilidad "inversa" en el sentido de que la "directa" sería la probabilidad de observar algo supuesto que rigen ciertas condiciones. Los cultores de la inferencia bayesiana (basada en dicho teorema) afirman que la trascendencia de la probabilidad inversa reside en que es ella la que realmente interesa a la ciencia, dado que procura sacar conclusiones generales (enunciar leyes) a partir de lo objetivamente observado, y no viceversa. Miembro de la Royal Society desde 1742, Bayes fue uno de los primeros en utilizar la probabilidad inductivamente y establecer una base matemática para la inferencia probabilística.

Girolamo Cardano: Matemático italiano. Se graduó en la Universidad de Pavía y se doctoró en medicina (1526) en la de Padua. En 1536 se trasladó a Milán, donde empezó a ejercer como profesor de matemáticas. En 1539 publicó su primera obra en dicha materia, la Práctica de matemáticas y mediciones individuales, en la que recogió el contenido de sus clases. Ese mismo año fue admitido en la facultad de medicina, de la que al poco fue nombrado rector. En 1543, ya con una sólida fama como médico (a él se debe la primera descripción clínica de la fiebre tifoidea), se trasladó de nuevo a Pavía. Dos años después publicó su obra científica más importante, el Ars magna, donde se recoge un exhaustivo estudio de las ecuaciones de tercer grado o cúbicas, y en la que se ofrece la regla para la resolución de las mismas que lleva su nombre. Por la publicación de dicho resultado fue duramente criticado por el también matemático Niccolò Tartaglia, quien se lo había revelado con la condición de que lo mantuviera en secreto y no lo divulgara, si bien Cardano, al descubrir otra fuente en la que se contenía dicha regla, se creyó liberado de su promesa.

Pierre De Fermat: El matemático francés Pierre de Fermat destacó por sus importantes aportaciones a la teoría de la probabilidad y al cálculo diferencial. También contribuyó al desarrollo de la teoría de números. En su juventud, con su amigo el científico y filósofo Blaise Pascal, realizó una serie de investigaciones sobre las propiedades de los números. De estos estudios, Fermat dedujo un importante método de cálculo de probabilidades. También se interesó por la teoría de números y realizó varios descubrimientos en este campo. Por estas aportaciones hubo quien le consideró el padre de la teoría moderna

Blaise Pascal: Pascal formuló la teoría matemática de la probabilidad, que ha llegado a ser de gran importancia en estadísticas actuariales, matemáticas y sociales, así como un elemento fundamental en los cálculos de la física teórica moderna

Abraham de Moivre; En 1711 Abraham de Moivre publicó una obra titulada The doctrine of chances, en la cual analizó a profundidad el modelo ideal de la probabilidad frecuentista y equiprobable desarrollado según los trabajos de Pascal, Fermat y Huygens. Posteriormente Abraham de Moivre siguió realizando estudios sobre la probabilidad frecuentista y también profundizó en el análisis del modelo de la distribución binomial de la probabilidad expuesto en la obra Ars conjectandi de Jacob Bernoulli. Luego Abraham de Moivre vinculó estos estudios al cálculo de la forma como se distribuyen los resultados de la probabilidad dentro de una relación binomial expresada como (a+b)n cuando se emplean grandes valores para n y cuando todos

...

Descargar como (para miembros actualizados) txt (6 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com