La Parabola
ellisz24 de Febrero de 2014
1.649 Palabras (7 Páginas)363 Visitas
La parábola
La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz.
Elementos de la parábola:
1Foco: Es el punto fijo F.
2Directriz: Es la recta fija d.
3Parámetro: Es la distancia del foco a la directriz, se designa por la letrap.
4Eje: Es la recta perpendicular a la directriz que pasa por el foco.
5Vértice: Es el punto de intersección de la parábola con su eje.
6Radio vector: Es un segmento que une un punto cualquiera de la parábola con el foco.
Ecuación reducida de la parábola
1 El eje de la parábola coincide con el de abscisas y el vértice con el origen de coordenadas
Si:
Si:
2 El eje de la parábola coincide con el de ordenadas y el vértice con el origen de coordenadas
Si:
Si:
Parábola con eje paralelo a OX y vértice distinto al origen
Parábola con eje paralelo a OY, y vértice distinto al origen
Elementos de la elipse
Elipse
Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante.
Elementos de la elipse:
1Focos: Son los puntos fijos F y F'.
2Eje focal: Es la recta que pasa por los focos.
3Eje secundario: Es la mediatriz del segmento FF'.
4Centro: Es el punto de intersección de los ejes.
5Radios vectores: Son los segmentos que van desde un punto de la elipse a los focos: PF y PF'.
6Distancia focal: Es el segmento de longitud 2c, c es el valor de la semidistancia focal.
7Vértices: Son los puntos de intersección de la elipse con los ejes: A, A', B y B'.
8Eje mayor: Es el segmento de longitud 2a, a es el valor del semieje mayor.
9Eje menor:Es el segmento de longitud 2b, b es el valor del semieje menor.
10Ejes de simetría: Son las rectas que contienen al eje mayor o al eje menor.
11Centro de simetría: Coincide con el centro de la elipse, que es el punto de intersección de los ejes de simetría.
Relación entre la distancia focal y los semiejes
Excentricidad
Es un número que mide en mayor o menor achatamiento de la elipse. Y es igual al cociente entre su semidistancia focal y su semieje mayor.
Ecuación reducida
Si el eje principal está en el de abscisas se obtendrá la siguiente ecuación:
Las coordenadas de los focos son:
F'(−c, 0) y F(c, 0)
Elipse con los focos en el eje OY
Si el eje principal está en el de ordenadas se obtendrá la siguiente ecuación:
Las coordenadas de los focos son:
F'(0, −c) y F(0, c)
Elipse con eje paralelos a OX y centro distinto al origen
Si el centro de la elipse C(x0,y0) y el eje principal es paralelo a OX, los focos tienen de coordenadas F(X0+c, y0) y F'(X0-c, y0). Y la ecuación de la elipse será:
Al quitar denominadores y desarrollar las ecuaciones se obtiene, en general, una ecuación de la forma:
Donde A y B tienen el mismo signo.
Elipse con eje paralelo a OY y centro distinto al origen
Si el centro de la elipse C(x0,y0) y el eje principal es paralelo a OY, los focos tienen de coordenadas F(X0, y+c) y F'(X0, y0−c). Y la ecuación de la elipse será:
Al quitar denominadores y desarrollar las ecuaciones se obtiene, en general, una ecuación de la forma:
Donde A y B tienen el mismo signo.
Hipérbola
Es el lugar geométrico de los puntos del plano cuya diferencia de distancias a dos puntos fijos llamados focos es constante.
Elementos de la hipérbola:
1Focos: Son los puntos fijos F y F'.
2Eje focal: Es la recta que pasa por los focos.
3Eje secundario o imaginario: Es la mediatriz del segmento FF'.
4Centro: Es el punto de intersección de los ejes.
5Vértices: Los puntos A y A' son los puntos de intersección de la hipérbola con el eje focal.
Los puntos B y B' se obtienen como intersección del eje imaginario con la circunferencia que tiene por centro uno de los vértices y de radio c.
6Radios vectores: Son los segmentos que van desde un punto de la hipérbola a los focos: PF y PF'.
7Distancia focal: Es el segmento de longitud 2c.
8Eje mayor: Es el segmento de longitud 2a.
9Eje menor:Es el segmento de longitud 2b.
10Ejes de simetría: Son las rectas que contienen al eje real o al eje imaginario.
11Asíntotas: Son las rectas de ecuaciones:
12Relación entre los semiejes:
Excentricidad
La excentricidad mide la abertura mayor o menor de las ramas de la hipérbola.
Ecuación reducida de la hipérbola
Si el eje real está en el eje de abscisas las coordenadas de los focos son:
F'(-c,0) y F(c,0)
Ecuación de la hipérbola con los focos en el eje OY
Si el eje real está en el eje de abscisas las coordenadas de los focos son:
F'(0, -c) y F(0, c)
Ecuación de la hipérbola con eje paralelo a OX, y centro distinto al origen
Si el centro de la hipérbola es C(x0, y0) y el eje principal es paralelo a OX, los focostienen de coordenadas F(X0+c, y0) y F'(X0−c, y0). Y la ecuación de la hipérbola será:
Al quitar denominadores y desarrollar las ecuaciones se obtiene, en general, una ecuación de la forma:
...