MAXIMOS Y MINIMOS.
Daaniel9223 de Febrero de 2014
640 Palabras (3 Páginas)712 Visitas
MAXIMOS Y MINIMOS.
En matemáticas, los máximos y mínimos de una función, conocidos colectivamente como extremos de una función, son los valores más grandes (máximos) o más pequeños (mínimos), que toma una función en un punto situado ya sea dentro de una región en particular de la curva (extremo local) o en el dominio de la función en su totalidad (extremo global o absoluto).
De manera más general, los máximos y mínimos de un conjunto (como se define en teoría de conjuntos) son los elementos mayor y menor en el conjunto, cuando existen. El localizar valores extremos es el objetivo básico de la optimización matemática.
Extremos relativos o locales
Sea , sea y sea un punto perteneciente a la función.
Se dice que es un máximo local de si existe un entorno reducido de centro , en símbolos , donde para todo elemento de se cumple . Para que esta propiedad posea sentido estricto debe cumplirse .
Análogamente se dice que el punto es un mínimo local de si existe un entorno reducido de centro , en símbolos , donde para todo elemento de se cumple .
Extremos absolutos
Sea , sea y sea un punto perteneciente a la función.
Se dice que P es un máximo absoluto de f si, para todo x distinto de pertenenciente al subconjunto A, su imagen es menor o igual que la de . Esto es:
máximo absoluto de .
Análogamente, P es un mínimo absoluto de f si, para todo x distinto de perteneciente al subconjunto A, su imagen es mayor o igual que la de . Esto es:
mínimo absoluto de .
Cálculo de extremos locales
Dada una función suficientemente derivable , definida en un intervalo abierto de , el procedimiento para hallar los extremos de esta función es muy sencillo:
1. Se halla la primera derivada de
2. Se halla la segunda derivada de
3. Se iguala la primera derivada a 0:
4. Se despeja la variable independiente y se obtienen todos los valores posibles de la misma: .
5. Se halla la imagen de cada sustituyendo la variable independiente en la función.
6. Ahora, en la segunda derivada, se sustituye cada :
1. Si , se tiene un máximo en el punto .
2. Si , se tiene un mínimo en el punto .
3. Si , debemos sustituir en las sucesivas derivadas hasta sea distinto de cero. Cuando se halle la derivada para la que no sea nulo, hay que ver qué derivada es:
1. Si el orden de la derivada es par, se trata de un extremo local; un máximo si y un mínimo si
2. Si el orden de la derivada es impar, se trata de un punto de inflexión, pero no de un extremo.
Máximos y mínimos
Máximos
Si f y f' son derivables en a, a es un máximo relativo o local si se cumple:
1. f'(a) = 0
2. f''(a) < 0
Mínimos
Si f y f' son derivables en a, a es un mínimo relativo o local si se cumple:
1. f'(a) = 0
2. f''(a) > 0
Cálculo de los máximos y mínimos relativos
f(x) = x3 − 3x + 2
1. Hallamos la derivada primera y calculamos sus raíces.
f'(x) = 3x2 − 3 = 0
x = −1 x = 1.
2. Realizamos la 2ª derivada, y calculamos el signo que toman en ella los ceros de derivada primera y si:
f''(x) > 0 Tenemos un mínimo.
f''(x) < 0 Tenemos un máximo.
f''(x) = 6x
f''(−1) = −6 Máximo
f'' (1) = 6 Mínimo
3. Calculamos la imagen (en la función) de los extremos relativos.
f(−1) = (−1)3 − 3(−1) + 2 = 4
f(1) = (1)3 − 3(1) + 2 = 0
Máximo(−1, 4) Mínimo(1, 0)
Ejercicios
...