ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Concepto De Integral

rshv22 de Junio de 2015

768 Palabras (4 Páginas)246 Visitas

Página 1 de 4

CONCEPTO DE INTEGRAL

1. INTEGRAL INDEFINIDA

Proceso que permite restituir una función que ha sido previamente derivada. Es decir, la operación opuesta de la derivada así como la suma es a la resta.

Por conveniencia se introduce una notación para la antiderivada de una función

Si F!(x) = f(x), se representa :

A este grafo ∫ se le llama símbolo de la integral y a la notación ∫f x dx se le llama integral indefinida de f(x) con respecto a x. La función f(x)se denomina integrando, el proceso recibe el nombre de integración. Al número C se le llama conste de integración esta surge por la imposibilidad de la constante derivada. Así como dx denota diferenciación son respecto a la variable x, lo cual indica la variable derivada.

2. SÓLIDO O VOLUMEN DE REVOLUCIÓN:

Se denomina sólido de revolución o volumen de revolución, al sólido obtenido al rotar una región del plano alrededor de una recta ubicada en el mismo, las cuales pueden o no, cruzarse. Dicha recta se denomina eje de revolución.

a) Rotación paralela al eje de abscisas (Eje x)

El volumen de un sólido generado por el giro de un área comprendida entre dos gráficas, f(x) y g(x) definidas en un intervalo [a,b] alrededor de un eje horizontal, es decir, una recta paralela al eje OX de expresión y=K siendo K constante, viene dado por la siguiente fórmula genérica

En particular, si se gira una figura plana comprendida entre y=f(x), y=0, x=a y x=b alrededor del eje OX, el volumen del sólido de revolución viene generado por la fórmula:

método de discos.

Ambas expresiones se deducen de que al hacer girar un área formada por innumerables rectángulos de base dx y altura f(x), alrededor del eje X, se forman discos colocados verticalmente cuyos volúmenes sumados resultan en el volumen de todo el sólido. Cada disco tiene por volumen El de un cilindro como si fuera una moneda acomodada verticalmente, es decir, V=Πr²h donde el radio de la base del cilindro es f(x), y la altura del cilindro es dx, por lo que el volumen del cilindro resulta ser V=Πf²(x)dx y la suma de todos estos volúmenes parciales, es el volumen total que resulta en la expresión:

Si son dos funciones f(x) y g(x), el volumen total será la resta del volumen mayor menos el volumen menor

Pero si el giro es alrededor de una recta paralela al eje X: y=K, entonces la expresión resultante es (siempre que K<X en para todo X):

En el caso en el que K>X, es decir la recta X=K se encuentre a la derecha de las funciones se debe aplicar:

b) Rotación paralela al eje de ordenadas (Eje y)

Éste es otro método que permite la obtención de volúmenes generados por el giro de un área comprendida entre dos funciones cualesquiera, f(x) y g(x), en un intervalo [a,b] alrededor de un eje de revolución paralelo al eje de ordenadas cuya expresión es x=K siendo K constante positiva. La fórmula general del volumen de estos sólidos es:

Esta fórmula se simplifica si giramos la figura plana comprendida entre y=f(x), y=0, x=a y x=b alrededor del eje OY, ya que el volumen del sólido de revolución viene generado por:

Método de cilindros o capas.

3. LONGITUD DE ARCO:

En matemática, la longitud de arco, también llamada rectificación de una curva, es la medida de la distancia o camino recorrido a lo largo de una curva o dimensión lineal. Históricamente, ha sido difícil determinar esta longitud en segmentos irregulares; aunque fueron usados varios métodos para curvas específicas, la llegada del cálculo trajo consigo la fórmula general para obtener soluciones cerradas para algunos casos.

• Al

...

Descargar como (para miembros actualizados) txt (5 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com