ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

CONCEPTOS DE ESFUERZO


Enviado por   •  13 de Julio de 2013  •  1.442 Palabras (6 Páginas)  •  668 Visitas

Página 1 de 6

1. ESFUERZO

CONCEPTOS DE ESFUERZO

Esfuerzos. ‘Son las fuerzas inversas, debido a las cargas, sometidas a un elemento resistente’

Esfuerzo:

En física e ingeniería, se denomina tensión mecánica al valor de la distribución de fuerza por unidad de área en el entorno de un punto material dentro de un cuerpo material o medio continuo. Un caso particular es el de tensión uniaxial. A la que se le llama también esfuerzo simple, es la fuerza por unidad de área que soporta un material, que se denota con la σ

σ = Esfuerzo o fuerza por unidad de área (valor medio).

P =Carga aplicada.

A = Área de sección transversal

CLASIFICIACION DE LOS ESFUERZOS

Fuerza. Son esfuerzos que se pueden clasificar debido a las fuerzas. Generan desplazamiento. Dependiendo si están contenidos (o son normales) en el plano que contiene al eje longitudinal tenemos:

Contiene al eje longitudinal:

Tracción. Es un esfuerzo en el sentido del eje. Tiende a alargar las fibras.

Compresión. Es una tracción negatia. Las fibras se acortan.

Normal al plano que contiene el eje longitudinal:

Cortadura. Tiende a cortar las piezas mediante desplazamiento de las secciones afectadas.

Momento. Son esfuerzos que se pueden clasificar debido a los momentos. Generan giros. Dependiendo si están contenidos (o son normales) en el plano que contiene al eje longitudinal tenemos:

Contiene al eje longitudinal:

Flexión. El cuerpo se flexa, alargándose unas fibras y acortándose otras.

Normal al plano que contiene el eje longitudinal:

Torsión. Las cargas tienden a retorcer las piezas.

Otros:

Esfuerzos compuestos. Es cuando una pieza se encuentra sometida simultáneamente a varios esfuerzos simples, superponiéndose sus acciones.

Esfuerzos variables. Son los esfuerzos que varían de valor e incluso de signo. Cuando la diferencia entre el valor máximo y el valor mínimo es 0, el esfuerzo se denomina alternado. Pueden ocasionar rotura por fatiga.

TIPOS DE ESFUERZOS

Las cargas que tienen que soportar las estructuras producen en sus elementos fuerzas que tratan de deformarlos denominadas esfuerzos. Hay 5 tipos de esfuerzos: compresión, tracción, flexión, torsión y cortante.

Cuando las fuerzas tienden a chafarlo o aplastarlo. Cuando las fuerzas tienden a estirarlo o alargarlo.

Cuando las fuerzas tienden a doblarlo. Cuando las fuerzas tienden a cortarlo.

Cuando las fuerzas tienden a torcerlo.

2. ESFUERZO DE FLEXION

Combinación de los esfuerzos de compresión y de tracción que actúan en la sección transversal de un elemento estructural para ofrecer resistencia a una fuerza transversal. Caracteriza la intensidad de las fuerzas que causan el estiramiento, aplastamiento o torsión, generalmente con base en una "fuerza por unidad de área".

Fuerza o resistencia que opone un cuerpo sometido a una o varias de las fuerzas externas enumeradas precedentemente. Fuerza que tiende a alargar, acortar, flexionar, torcer o cortar cizallándolo un cuerpo cualquiera.

FLEXION: Curvatura, deformación que experimenta un sólido cuando se aplican fuerzas o soporta cargas que actúan en su plano de simetría o están dispuestas en pares simétricos con respecto a dicho plano. Una pieza experimenta tensiones de flexión, cuando está sometida a fuerzas externas que se ejercen en sentido transversal a su longitud. Estas fuerzas se hallan generalmente en el mismo plano y son con frecuencia perpendiculares al eje de la pieza. Bajo su acción, la pieza cede y se deforma; si era recta (como es nuestro caso), adquiere cierta curvatura, acortándose las fibras situadas en la parte cóncava y alargándose las de la parte convexa.

3. ESFUERZO DE TORSION

Entendemos por Torsión la deformación de un eje, producto de la acción de dos fuerzas paralelas con direcciones contrarias en sus extremos.

En términos de ingeniería, encontramos Torsión en una barra, eje u objeto, cuando uno de sus extremos permanece fijo y el otro se somete a una fuerza giratoria.

4. DEFORMACION

Es el cambio en el tamaño o forma de un cuerpo debido a la aplicación de una o más fuerzas sobre el mismo o la ocurrencia de dilatación térmica.

La magnitud más simple para medir la deformación es lo que en ingeniería se llama deformación axial o deformación unitaria se define como el cambio de longitud por unidad de longitud:

de la misma magnitud

Donde es la longitud inicial de la zona en estudio y la longitud final o deformada. Es útil para expresar los cambios de longitud de un cable o un prisma mecánico. En la Mecánica de sólidos deformables la deformación puede tener lugar según diversos modos y en diversas direcciones, y puede además provocar distorsiones en la forma del cuerpo, en esas condiciones la deformación de un cuerpo se puede caracterizar por un tensor (más exactamente un campo tensorial) de la forma:

Donde cada una de las componentes de la matriz anterior, llamada tensor deformación representa una función definida sobre las coordenadas del cuerpo que se obtiene como combinación de derivadas del campo de desplazamientos de los puntos del cuerpo.

DEFORMACIONES PLASTICAS Y ELASTICAS

Tanto para la deformación unitaria como para el tensor deformación se puede descomponer el valor de la deformación en:

• Deformación plástica, irreversible o permanente. Modo de deformación en que el material no regresa a su forma original después de retirar la carga aplicada. Esto sucede porque, en la deformación plástica, el material experimenta cambios termodinámicos irreversibles al adquirir mayor energía potencial elástica. La deformación plástica es lo contrario a la deformación reversible.

• Deformación elástica, reversible o no permanente, el cuerpo recupera su forma original al retirar la fuerza que le provoca la deformación. En este tipo de deformación, el sólido, al variar su estado tensional y aumentar su energía interna en forma de energía potencial elástica, solo pasa por cambios termodinámicos reversibles.

Comúnmente se entiende por materiales elásticos, aquellos que sufren grandes elongaciones cuando se les aplica una fuerza, como la goma elástica que puede estirarse sin dificultad recuperando su longitud original una vez que desaparece la carga. Este comportamiento, sin embargo, no es exclusivo de estos materiales, de modo que los metales y aleaciones de aplicación técnica, piedras, hormigones y maderas empleados en construcción y, en general, cualquier material, presenta este comportamiento hasta un cierto valor de la fuerza aplicada; si bien en los casos apuntados las deformaciones son pequeñas, al retirar la carga desaparecen.

Al valor máximo de la fuerza aplicada sobre un objeto para que su deformación sea elástica se le denomina límite elástico y es de gran importancia en el diseño mecánico, ya que en la mayoría de aplicaciones es éste y no el de la rotura, el que se adopta como variable de diseño (particularmente en mecanismos). Una vez superado el límite elástico aparecen deformaciones plásticas (que son permanentes tras retirar la carga) comprometiendo la funcionalidad de ciertos elementos mecánicos.

I NTRODUCCION

Con este trabajo se pretende conceptualizar, comparar la relación y definir lo que se entiende por Esfuerzo y Deformaciones, si bien sabemos un Esfuerzo es la aplicación de una fuerza inversa que se produce debido a las cargas, sometidas a un elemento resistente. Estos esfuerzos pueden causar lo que conocemos como Deformaciones que se define como el cambio en el tamaño o forma de un cuerpo debido a la aplicación de una o más fuerzas sobre el mismo, En la mayoría de las ocasiones, los materiales metálicos se emplean con fines estructurales. Es decir, los componentes fabricados con metales deben responder de forma adecuada a determinadas situaciones mecánicas como tracción, compresión, torsión entre otros. La expresión de responder de forma adecuada puede entenderse en muy diferentes sentidos.

Una pieza puede estar sometida a diferentes tipos de esfuerzos desde el compuesto por diferentes esfuerzos simples, y esfuerzos variables que denominamos como alternados que pueden llegar a fracturar la pieza.

CONCLUSION

Basándose en la presente investigación llegamos a la conclusión de que el esfuerzo es la cantidad de fuerza requerida que se aplica a una sección dada. Y también que existen diversos tipos de esfuerzos como son los axiales, cortantes. Así como lo que es una deformación es un cambio de forma y tamaño en un cuerpo al aplicarle una fuerza. La deformación es un proceso termodinámico en el que la energía interna del cuerpo acumula energía potencial elástica. A partir de unos ciertos valores de la deformación se pueden producir transformaciones del material y parte de la energía se disipa en forma de plastificado, endurecimiento, fractura o fatiga del material.

Si un cuerpo es sometido a esfuerzo tensivo o compresivo en una dirección dada, no solo ocurre deformación en esa dirección (dirección axial) sino también deformaciones unitarias en direcciones perpendiculares a ella (deformación lateral). Dentro del rango de acción elástica la compresión entre las deformaciones lateral y axial en condiciones de carga uniaxial (es decir en un solo eje) es denominada relación de Posición. La extensión axial causa contracción lateral, y viceversa.

Republica Bolivariana de Venezuela

Ministerio del Poder Popular para la Educación Universitaria

Instituto Universitario Tecnológico de Cabimas

Extensión Cuidad Ojeda

Resistencia de los Materiales

Esfuerzo y Deformación

...

Descargar como  txt (9.6 Kb)  
Leer 5 páginas más »
txt