ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

CORROSIÓN ELECTROQUÍMICA


Enviado por   •  27 de Agosto de 2012  •  3.534 Palabras (15 Páginas)  •  538 Visitas

Página 1 de 15

INTRODUCCION

Una celda electroquímica es una combinación del tipo siguiente:

Conductor

electrónico

(metal) Conductor

iónico

(electrolito) Conductor

electrónico

(metal)

En ella pueden tener lugar procesos electroquímicos con el paso de una corriente eléctrica. Si la celda electroquímica produce energía eléctrica, causada por el consumo de energía química, se dice que tenemos una celda galvánica o pila. Si, en cambio, la celda electroquímica consume corriente de una fuente de corriente externa, almacenando como consecuencia energía química, se dice que tenemos una celda electrolítica.

Algunas celdas galvánicas reciben nombres especiales. Una celda de corrosión es una celda o pila galvánica en la cual las reacciones electroquímicas que tienen lugar conducen a la corrosión. Una celda de corrosión de dimensiones muy pequeñas (por ejemplo ( < 0.1 mm) se conoce como celda de acción localizada o microcelda galvánica. Las celdas locales o micropilas se dan, por ejemplo, en aleaciones multifásicas o en metales con recubrimientos que presentan buena conductividad eléctrica o en inclusiones de óxidos, sulfuros, carbón, etc. La acción de estas celdas a menudo conduce a un ataque localizado, tal como picaduras o corrosión bajo tensión.

3.2 DEFINICIÓN DE ÁNODO Y CÁTODO

Para la notación de los dos electrodos en una celda electroquímica (galvánica o electrolítica) son válidas las siguientes definiciones generales: El ánodo es el electrodo en el cual, o a través del cual, la corriente positiva pasa hacia el electrolito. El cátodo es el electrodo en el cual entra la corriente positiva proveniente del electrolito.

Generalmente, se toman como válidas las siguientes reglas:

1) La reacción anódica es una oxidación y la reacción catódica una reducción.

2) Los aniones (iones negativos) migran hacia el ánodo y los cationes (iones positivos) hacia el cátodo. Hay que hacer notar que particularmente en una celda galvánica, por ejemplo en una pila seca (Figura 9), la corriente positiva fluye del polo (+) al (-) en el circuito externo, mientras que dentro de la celda, la corriente positiva fluye del (-) al (+).

Figura 9. Dirección de la corriente positiva en una pila seca.

3.3 CORROSIÓN ELECTROQUÍMICA

La corrosión electroquímica es un proceso espontáneo que denota siempre la existencia de una zona anódica (la que sufre la corrosión), una zona catódica y un electrolito, y es imprescindible la existencia de estos tres elementos, además de una buena unión eléctrica entre ánodos y cátodos, para que este tipo de corrosión pueda tener lugar. La corrosión más frecuente siempre es de naturaleza electroquímica y resulta de la formación sobre la superficie metálica de multitud de zonas anódicas y catódicas; el electrolito es, en caso de no estar sumergido o enterrado el metal, el agua condensada de la atmósfera, para lo que la humedad relativa deberá ser del 70%.

El proceso de disolución de un metal en un ácido es igualmente un proceso electroquímico. La infinidad de burbujas que aparecen sobre la superficie metálica revela la existencia de infinitos cátodos, mientras que en los ánodos se va disolviendo el metal. A simple vista es imposible distinguir entre una zona anódica y una catódica, dada la naturaleza microscópica de las mismas (micropilas galvánicas). Al cambiar continuamente de posición las zonas anódicas y catódicas, llega un momento en que el metal se disuelve totalmente.

Las reacciones que tienen lugar en las zonas anódicas y catódicas son las siguientes:

ánodo: Me Me n+ + ne-

cátodo: 2H+ + 2e- H2

O2+2H2O + 4e- 4OH- (medio ácido) } (oxidación)

(medio neutro y alcalino) (reducción)

Ya que la corrosión de los metales en ambientes húmedos es de naturaleza electroquímica, una aproximación lógica para intentar parar la corrosión sería mediante métodos electroquímicos. Los métodos electroquímicos para la protección contra la corrosión requieren de un cambio en el potencial del metal para prevenir o al menos disminuir su disolución.

La protección catódica, en este sentido, es un tipo de protección (electroquímico) contra la corrosión, en el cual el potencial del electrodo del metal en cuestión se desplaza en la dirección negativa. Los principios de la protección catódica pueden ilustrarse mediante un diagrama termodinámico potencial - pH, como se muestra en la figura 10, en el caso del hierro (Fe).

Figura 10. Diagrama potencial -pH para el Hierro (Fe).

Consideremos un espécimen de acero al carbono sumergido en ácido clorhídrico (HCl) de concentración 0.1 M. El acero se disolverá con desprendimiento de hidrógeno (H2). El potencial de corrosión del espécimen quedará entre los potenciales de equilibrio correspondientes al electrodo de H2 y Fe (puntos A y B en la figura 10).

De acuerdo con el diagrama, hay un camino para prevenir la corrosión mediante un cambio de potencial. Aplicando una corriente catódica, el potencial del espécimen de acero se desplazará en la dirección negativa, hacia la zona de inmunidad, en la cual el metal, termodinámicamente, se encuentra estable (no se puede corroer). Para lograr este desplazamiento del potencial en la dirección negativa, el objeto que se corroe se une eléctricamente a un metal más negativo en la serie electroquímica, un ánodo, formando una celda galvánica en la que actuará como cátodo. Para que el metal esté protegido catódicamente, el valor de su potencial de electrodo tiene que quedar por debajo de su potencial de corrosión en la solución mencionada. Su disolución será así prevenida totalmente (protección catódica completa) o al menos disminuirá (protección catódica incompleta). Como consecuencia de la corriente que circule en

...

Descargar como (para miembros actualizados)  txt (21.9 Kb)  
Leer 14 páginas más »
Disponible sólo en Clubensayos.com