Funciones Lineales
k_king_2912 de Octubre de 2014
6.312 Palabras (26 Páginas)259 Visitas
“INDICE”
“SUPTITULO” “PAGINAS”
2.1 “Concepto de variable función dominio condominio y recorrido de una función”.
2,3
2.2 “Función inyectiva Función suprayectiva y Función biyectiva”
4,5,6,7,8,9
2.3 “Función real de variable real y su representación gráfica”
11,12
2.4 “Funciones algebraicas función polinomial Función racional Función irracional”
13,14,15,16,17,18,
2.5 “Funciones trascendentes funciones trigonométricas funciones exponenciales”
19,20,21
2.6 “Función definida por más de una regla de correspondencia función valor absoluto”
22,23
2.7 “Operaciones con funciones Función adición Función multiplicación Función composición”
24,25,26
2.8 “Función inversa Función logarítmica Funciones trigonométricas inversas”
27,28,29,30
2.9 “Funciones con dominio en los números naturales y recorrido en los números reales las sucesiones infinitas”
31,32,33
2.10 “Función implícita” 34,35
BIBLIOGRAFIA 36
2.1 “Concepto De Variable Función Dominio Codominio Y Recorrido De Una Función”
De acuerdo con la definición formal de función, “Una función es una ecuación matemática que relaciona los elementos de un conjunto con un solo elemento de otro conjunto”.
El objetivo principal de leer sobre funciones es ser capaz de resolver las relaciones de las mismas, las funciones formulan las relaciones en forma de ecuaciones y al resolver estas se obtienen las respuestas.
En términos sencillos, una función es algo que se resuelve para una o más variables.
Para comprender con mayor profundidad las funciones, es importante entender lo que es una variable.
Una variable puede ser considerada como un elemento o artículo que puede ser medido en términos cuantitativos o puede entenderse como un elemento que puede ser representado por un número para medir su magnitud.
Su nombre se mantiene así que lo que varía son los valores, es decir, su valor cambia para diferentes valores de entrada.
A la luz de la declaración anterior, una variable puede ser entendida como un elemento para el cual obtenemos un número de valores para argumentos diferentes de una función particular.
Generalmente, el alfabeto se utiliza para representar las variables de una función.
Como ejemplo, 2Z2 es una variable debido a que recibimos diferentes valores para esta expresión a medida que el valor de z cambia.
En esta expresión 2 es llamado el coeficiente de la variable z.
Consideremos dos conjuntos no vacíos A y B, en una situación de correspondencia de A a B que asigna un único elemento de B a uno o más elementos de A esto se conoce como una función de A a B, es decir, f: A → B, donde f se denomina la correspondencia.
Aquí, f(a) = b, a ε A y b ε B. De la declaración previa denominamos b como la imagen de a bajo la correspondencia de f. Es importante mencionar que no puede haber más de una imagen de un elemento particular en el conjunto A, lo que significa que no pueden existir funciones con múltiples valores.
En el ejemplo anteriormente expuesto, llamamos a A el dominio de la función, mientras que B es llamado el co-dominio.
Esto significa que un conjunto de todas las entradas de una función se conoce como el dominio de la función, mientras que un conjunto de todas las salidas probables de la función se llama el co-dominio de la función.
Aquí es importante tener en cuenta el uso de la palabra “probable”.
Esto se debe a que el conjunto de todas las salidas de la función se conoce como el rango de la función. Para entender la delgada línea entre los dos se tomará un ejemplo de una función valorada real.
En el caso de una función valorada real el co-dominio se compone de todos los números reales incluso si algunos de ellos no pueden formar parte del rango de la función.
Para entender los términos en detalle, veamos un ejemplo Dado que el denominador no puede ser igual a cero, esto implica que el dominio de la función sería de R-{1}
Para conocer el rango, x> 0 debe registrarse en la recta numérica y luego 1-x> 0 en la misma recta numérica.
La combinación de ambas salidas da el rango de (0, 1).
En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio) y otro conjunto de elementos Y (llamado codominio) de forma que a cada elemento x del dominio le corresponde un único elemento f(x) del codominio (los que forman el recorrido, también llamado rango o ámbito). En lenguaje cotidiano o más simple, diremos que las funciones matemáticas equivalen al proceso lógico común que se expresa como “depende de”. Las funciones matemáticas pueden referirse a situaciones cotidianas, tales como: el costo de una llamada telefónica que depende de su duración, o el costo de enviar una encomienda que depende de su peso.
2.2 “Función inyectiva Función suprayectiva y Función biyectiva”
FUNCIÓN INYECTIVA
Una función f es inyectiva si, cuando f(x) = f(y), x = y.
Ejemplo: f(x) = x2 del conjunto de los números naturales a es una función inyectiva.
(Pero f(x) = x2 no es inyectiva cuando es desde el conjunto de enteros (esto incluye números negativos) porque tienes por ejemplo
• f(2) = 4 y
• f(-2) = 4)
Nota: inyectiva también se llama "uno a uno", pero esto se confunde porque suena un poco como si fuera biyectiva.
Otras formas de definirse:
Una función f: " X Y", es inyectiva si a cada valor del conjunto "X" (dominio) le corresponde un valor distinto en el conjunto "Y "(imagen) de "f", es decir a cada elemento del conjunto "Y" le corresponde un solo valor de "X" tal que, en el conjunto "X" no puede haber dos o mas elementos que tengan la misma imagen.
O dicho de otra manera:
Una función es inyectiva si cada f(x) en el recorrido es la imagen de exactamente un único elemento del dominio. En otras palabras, de todos los pares (x,y) pertenecientes a la función, las y no se repiten.Para determinar si una función es inyectiva, graficamos la función por medio de una tabla de pares ordenados. Luego trazamos líneas horizontales para determinar si las y (las ordenadas) se repiten o no.
EJEMPLO 1 : Determinar si la siguiente función es o no inyectiva: f(x) = x2 – 2
Asignando valores a "x" y representándolos en la tabla resulta:
x -3 -2 -1 0 1 2 3
f(x) 5 2 -1 -2 -1 2 5
:Donde su gráfica será
EJEMPLO 2: Determinar si la siguiente función es o no inyectiva: g(x) = 1 – x3.
Asignando valores a "x" y representándolos en la tabla resulta:
x -3 -2 -1 0 1 2 3
f(x) 28 9 2 1 0 -7 -26
Donde su gráfica seráa:
Si hay duda sobre su entendimiento veamos otra forma de expresión matemática y sus ejemplos:
Una función es inyectiva si a cada elemento del rango o imagen se le asocia con uno y solo un elemento del domino.
Ejemplo 1:
Sea A={1,2,3} B={1,2,3};
f: A.B:
f={(1,2), (2,1), (3,3)}
Es decir, gráficamente queda:
Nótese que cada elemento del
conjunto B recibe solamente una línea.
ENTONCES ES INYECTIVA.
Ejemplo 2.
Sea A={1,2,3} B={1,2,3};
f: A.B:
f={(1,2), (2,1), (3,2)}
(solo se cambio el número indicado en rojo) Gráficamente:
Hay un elemento de B (el número 2) que recibe dos flechas o líneas, por lo tanto
NO ES INYECTIVA.
Ejemplo 3.
Para la siguiente función: f(x) = y = x-1. A cada elemento del domino se le relaciona en la función con UN elemento de la imagen,
Por lo tanto ES INYECTIVA.
NOTA: El domino y la imagen son todos los reales:
Ejemplo 4.
Si la función fuera parábola, f(x)=x2 como la que se muestra a continuación:
Hay elementos en el domino que se le asigna el mismo valor de la imagen; por ejemplo la pareja de valores P1(2,4) tiene el mismo valor de la imagen 4; que el punto P2(-2,4). Por lo tanto la
función
NO ES INYECTIVA.
NOTA: Ahora el domino y la imagen son diferentes:
RESUELVA DE TAREA LOS SIGUIENTES EJERCICIOS:
Determinar si las siguientes funciones son o no inyectivas.
1) f(x) = 4x – 2
2) f(x) = x3 – x
3) f(x) = √x
4) f(x) = 2
5) f(x) = 1 – x2 – x
FUNCIÓN SUPRAYECTIVA
Una función f (de un conjunto A a otro B) es suprayectiva si para cada y en B, existe por lo menos un x en Aque cumple f(x) = y, en otras palabras f es suprayectiva si y sólo si f(A) = B.
Así que cada elemento de la imagen corresponde con un elemento del dominio por lo menos.
Ejemplo: la función f(x) = 2x del conjunto de los números naturales al de los números pares no negativos es sobreyectiva.
Sin embargo, f(x) = 2x del conjunto de los números naturales a no es sobreyectiva, porque, por ejemplo, ningún elemento de va al 3 por esta función.
Otras formas de definirse:
Una
...