ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Generador Industrial


Enviado por   •  18 de Febrero de 2014  •  2.236 Palabras (9 Páginas)  •  225 Visitas

Página 1 de 9

Los generadores eléctricos

Un generador es una máquina eléctrica rotativa que transforma energía mecánica en energía eléctrica. Lo consigue gracias a la interacción de los dos elementos principales que lo componen: la parte móvil llamada rotor, y la parte estática que se denomina estator.

Cuando un generador eléctrico está en funcionamiento, una de las dos partes genera un flujo magnético (actúa como inductor) para que el otro lo transforme en electricidad (actúa como inducido).

Los generadores eléctricos se diferencian según el tipo de corriente que producen. Así, nos encontramos con dos grandes grupos de máquinas eléctricas rotativas: los alternadores y las dinamos.

Los alternadores generan electricidad en corriente alterna. El elemento inductor es el rotor y el inducido el estator. Un ejemplo son los generadores de las centrales eléctricas, las cuales transforman la energía mecánica en eléctrica alterna.

Las dinamos generan electricidad en corriente continua. El elemento inductor es el estator y el inducido el rotor. Un ejemplo lo encontraríamos en la luz que tiene una bicicleta, la cual funciona a través del pedaleo.

El inductor está constituido por el rotor R, dotado de cuatro piezas magnéticas, las que para simplificar son imanes permanentes, cuya polaridad se indica, y el inducido o estator con bobinas de alambre arrolladas en las zapatas polares.

Las cuatro bobinas a-b, c-d, e-f y g-h, arrolladas sobre piezas de una aleación ferromagnética, se magnetizan bajo la acción de los imanes del inductor. Dado que el inductor está girando, el campo magnético que actúa sobre las cuatro zapatas cambia de sentido cuando el rotor gira 90º (se cambia de polo N a polo S), y su intensidad pasa de un máximo, cuando están las piezas enfrentadas, a un mínimo cuando los polos N y S están equidistantes de las piezas de hierro.

Son estas variaciones de sentido y de intensidad del campo magnético las que inducirán en las cuatro bobinas una diferencia de potencial (voltaje) que cambia de valor y de polaridad siguiendo el ritmo del campo.

La frecuencia de la corriente alterna que aparece entre los terminales A-B se obtiene multiplicando el número de vueltas por segundo del inductor por el número de pares de polos del inducido (en este caso 2), y el voltaje generado dependerá de la fuerza de los imanes (intensidad del campo), la cantidad de vueltas de alambre de las bobinas y de la velocidad de rotación.

La corriente que se genera mediante los alternadores descriptos, aumenta hasta un pico, cae hasta cero, desciende hasta un pico negativo y sube otra vez a cero varias veces por segundo, dependiendo de la frecuencia para la que esté diseñada la máquina. Este tipo de corriente se conoce como corriente alterna monofásica. Sin embargo, si la armadura la componen dos bobinas, montadas a 90º una de otra, y con conexiones externas separadas, se producirán dos ondas de corriente, una de las cuales estará en su máximo cuando la otra sea cero. Este tipo de corriente se denomina corriente alterna bifásica. Si se agrupan tres bobinas de armadura en ángulos de 120º, se producirá corriente en forma de onda triple, conocida como corriente alterna trifásica.

Siendo lo mismo girar la espira o a los campos, será mejor girar aquella parte que conduzca menor corriente porque los contactos deslizantes deberán dejar paso a corrientes más pequeñas. Esto se hace con los alternadores y motores reversibles.

Como la fem es proporcional a las variaciones del flujo magnético y al número de espiras estos alternadores suelen llevar una bobina con muchas espiras.

La ley de Faraday se utiliza para obtener la fem y la ley de Lenz para determinar el sentido de la corriente inducida.

Conexión en estrella (Υ)

Si los devanados de fase de un generador o consumidor se conectan de modo que los finales de los devanados se unan en un punto común, y los comienzos de éstos sean conectados a los conductores de la línea, tal conexión se llama conexión en estrella y se designa con el símbolo Y.

Punto neutro de la conexión Y

Son los puntos en los cuales están unidos los terminales de los devanados de fase del generador o del consumidor, en la figura 1 O es el punto neutro del generador y O' el punto neutro del consumidor. Ambos puntos O y O' están unidos con un conductor que se llama conductor neutro o hilo central. Los otros tres conductores del sistema trifásico que van al generador se llaman conductores de la línea De este modo el generador está unido con el consumidor mediante cuatro conductores. Dicho sistema se llama sistema tetra filar de corriente trifásica.

Corrientes y tensiones de la conexión Y

Durante el servicio por el conductor neutro pasa una corriente igual a la suma geométrica de tres corrientes IA, IB e IC que son las corrientes de fase, es decir: IN = IA + IB + IC Para este tipo de conexión las corrientes de línea y de fase coinciden Las tensiones medidas entre los comienzos de las fases del generador o consumidor y el punto neutro se llaman tensiones de fase y se designan con UA, UB, UC o en forma general con Uf. A menudo se establecen de antemano las magnitudes de la fuerza electromotriz (fem) en los devanados de fase del generador, designándose éstas con EA, EB, EC o Ef. Despreciando la resistencia de los devanados del generador, se puede escribir: EA = UA; EB = UB; EC = UC; Ef = Uf Las tensiones medidas entre los comienzos de las fases A y B, B y C, C y A del generador o consumidor se llaman tensiones compuestas y se designan por UAB, UBC, UCA o en forma general con Ucomp o tensión de línea UL. En un sistema trifásico conectado en estrella la tensión de la línea es:

y la corriente de línea es igual a la corriente de fase (IL = If).

En un sistema trifásico conectado en estrella las tensiones de línea (EAB, EBC, ECA ) y de fase ( EAN, EBN, ECN ) son distintas.

Conexión en triángulo o delta (Δ)

Los generadores o consumidores de corriente trifásica pueden conectarse no solo en estrella sino también en triángulo o delta. La conexión en triángulo se ejecuta de modo que el extremo final de la fase A esté unido al comienzo de la fase B, el extremo final de la fase B esté unido al comienzo de la fase C y el extremo final de la fase C esté unido al comienzo de la fase A. A los lugares de conexión

...

Descargar como (para miembros actualizados)  txt (13.4 Kb)  
Leer 8 páginas más »
Disponible sólo en Clubensayos.com