Geometria Analitica
anacocon28 de Enero de 2014
4.823 Palabras (20 Páginas)281 Visitas
Geometría y Trigonometría Analítica
Geometría
Alegoría de la Geometría.
La geometría (del latín geometría, que proviene del idioma griego γεωμετρία, geo tierra y metria medida), es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras en el plano o el espacio, incluyendo: puntos, rectas, planos, poli topos (que incluyen paralelas,perpendiculares, curvas, superficies, polígonos, poliedros, etc.).
Es la base teórica de la geometría descriptiva o del dibujo técnico. También da fundamento a instrumentos como el compás, el teodolito, el pantógrafo el sistema de posicionamiento global (en especial cuando se la considera en combinación con el análisis matemático y sobre todo con la secuaciones diferenciales).
Sus orígenes se remontan a la solución de problemas concretos relativos a medidas. Tiene su aplicación práctica en física aplicada, mecánica,arquitectura, cartografía, astronomía, náutica, topografía, balística, etc. Y es útil en la preparación de diseños e incluso en la elaboración de artesanía.
Historia
Artículo principal: Historia de la geometría
Fragmentos de los Elementos de Euclides en los Papiros de Oxirrinco.
La geometría es una de las ciencias más antiguas. Inicialmente constituida en un cuerpo de conocimientos prácticos en relación con las longitudes, áreas y volúmenes. En el Antiguo Egipto estaba muy desarrollada, según los textos de Herodoto, Estabón y Sículo. Euclides, en el siglo III a. C. configuró la geometría1 en forma axiomática y constructiva, tratamiento que estableció una norma a seguir durante muchos siglos: la geometría euclidiana descrita en «Los Elementos».
El estudio de la astronomía y la cartografía, tratando de determinar las posiciones de estrellas y planetas en la esfera celeste, sirvió como importante fuente de resolución de problemas geométricos durante más de un milenio. René Descartes desarrolló simultáneamente el álgebra de ecuaciones y la geometría analítica, marcando una nueva etapa, donde las figuras geométricas, tales como las curvas planas, podrían ser representadas analíticamente, es decir, con funciones y ecuaciones. La geometría se enriquece con el estudio de la estructura intrínseca de los entes geométricos que analizan Euler y Gauss, que condujo a la creación de la topología y la geometría diferencial.
Axiomas, definiciones y teorema
Un teorema descubierto y probado por Arquímedes: una esfera tiene 2/3 del volumen de su cilindro circunscrito.
La geometría se propone ir más allá de lo alcanzado por la intuición. Por ello, es necesario un método riguroso, sin errores; para conseguirlo se han utilizado históricamente los sistemas axiomáticos. El primer sistema axiomático lo establece Euclides, aunque era incompleto. David Hilbert propuso a principios del siglo XX otro sistema axiomático, éste ya completo. Como en todo sistema formal, las definiciones, no sólo pretenden describir las propiedades de los objetos, o sus relaciones. Cuando se axiomatiza algo, los objetos se convierten en entes abstractos ideales y sus relaciones se denominan modelos.
Esto significa que las palabras "punto", "recta" y "plano" deben perder todo significado material. Cualquier conjunto de objetos que verifique las definiciones y los axiomas cumplirá también todos los teoremas de la geometría en cuestión, y sus relaciones serán virtualmente idénticas al del modelo tradicional.
Axiomas [editar • editar código]
La geometría esférica es un ejemplo de geometría no euclidiana.
En geometría euclidiana, los axiomas y postulados son proposiciones que relacionan conceptos, definidos en función del punto, la recta y el plano. Euclides planteó cinco postulados y fue el quinto (el postulado de paralelismo) el que siglos después –cuando muchos geómetras lo cuestionaron al analizarlo– originará nuevas geometrías: la elíptica (geometría de Riemann) o la hiperbólica de Nikolái Lobachevski.
En geometría analítica, los axiomas se definen en función de ecuaciones de puntos, basándose en el análisis matemático y el álgebra. Adquiere otro nuevo sentido hablar de puntos, rectas o planos. Puede definir cualquier función, llámese recta, circunferencia, plano, etc.
Topología y geometría
El nudo de trébol.
El campo de la topología, que tuvo un gran desarrollo en el siglo XX, es en sentido técnico un tipo de geometría transformacional, en que las transformaciones que preservan las propiedades de las figuras son los homeomorfismos (por ejemplo, esto difiere de la geometría métrica, en que las transformaciones que no alteran las propiedades de las figuras son las isometrías). Esto ha sido frecuentemente expreso en la forma del dicho "la topología es la geometría de la página de goma".
Tipos de geometría
Entre los tipos de geometría más destacables se encuentran:
• Geometría euclidiana
• Geometría plana
• Geometría del espacio
• Geometría no euclidiana
• Geometría algebraica
• Geometría analítica
• Geometría clásica
• Geometría de dimensiones bajas
• Geometría descriptiva
• Geometría diferencial
• Geometría de curvas y superficies
• Geometría de Riemann
• Geometría diferencial de curvas
• Geometría diferencial de hipersuperficies
• Geometría diferencial de superficies
• Geometría diferencial de variedades
• Geometría diferencial discreta
• Geometría proyectiva
Punto (geometría)
Para otros usos de este término, véase Punto.
La intersección de los ejes de coordenadas cartesianas es un punto llamado origen.
En geometría, el punto es uno de los entes fundamentales, junto con la recta y el plano. Son considerados conceptos primarios, es decir, que sólo es posible describirlos en relación con otros elementos similares o parecidos. Se suelen describir apoyándose en los postulados característicos, que determinan las relaciones entre los entes geométricos fundamentales.
El punto es una figura geométrica adimensional: no tiene longitud, área, volumen, ni otro ángulo dimensional. No es un objeto físico. Describe una posición en el espacio, determinada respecto de un sistema de coordenadas preestablecidas.
Historia
El concepto de punto, como ente geométrico, surge en la antigua concepción griega de la geometría, compilada en Alejandría por Euclides en su tratado Los Elementos, dando una definición de punto excluyente: «lo que no tiene ninguna parte». El punto, en la geometría clásica se basa en la idea de que era un concepto intuitivo, el ente geométrico «sin dimensiones», y sólo era necesario asumir la noción de punto.
Representación gráfica
Ejemplos de ocho puntos localizados en el plano cartesiano mediante sus pares de coordenadas.
En algunos textos de geometría se suele utilizar una pequeña cruz (+), círculo (o), cuadrado o triángulo. En relación a otras figuras, suelen representarse con un pequeño segmento perpendicular cuando pertenece a una recta, semirrecta o segmento.
A los puntos se les suele nombrar con una letra mayúscula: A, B, C, etc. (a las rectas con letras minúsculas, y a los ángulos con letras griegas).
La forma de representar un punto mediante dos segmentos que se cortan (una pequeña “cruz” +) presupone que el punto es la intersección. Cuando se representa con un pequeño círculo, circunferencia, u otra figura geométrica, presupone que el punto es su centro.
Determinación geométrica
Un punto puede determinarse con diversos sistemas de referencia:
En el sistema de coordenadas cartesianas, se determina mediante las distancias ortogonales a los ejes principales, que se indican con dos letras o números: (x, y) en el plano; y con tres en el espacio (x, y, z).
En coordenadas polares, mediante su distancia al centro y la medida angular respecto del eje de referencia: (r, θ).
En coordenadas esféricas, mediante su distancia al centro y la medida angular respecto de los ejes de referencia: (r, θ, φ).
En coordenadas cilíndricas, mediante coordenadas radial, acimutal y altura: (u, φ, z).
También se pueden emplear sistemas de coordenadas elípticas, parabólicas, esferoidales, toridales, etc.
Puntos, rectas y planos: posiciones relativas
En función de sus posiciones relativas, existen dos tipos de puntos: colineales y coplanarios. Los denominados colineales son aquellos contenidos en una recta, no importando cuantos puntos sean mientras estén alineados y dentro de la recta. Se denominan puntos coplanarios a aquellos que están contenidos en un mismo plano.
Algunos postulados y teoremas relacionados con el punto
Postulados en geometría euclidiana
• Por un punto pasan infinitas rectas y planos.
• Dos puntos determinan una recta y sólo una.
• Una recta contiene infinitos puntos.
• Un plano contiene infinitos puntos e infinitas rectas.
• El espacio contiene infinitos puntos, rectas y planos.
Estos postulados se pueden generalizar para espacios de n dimensiones.
Teoremas en geometría euclidiana
• Tres puntos
...